
1

Spatial Correlation Based Incremental Learning for
Spatiotemporal Modeling of Battery Thermal

Process
Bing-Chuan Wang, Han-Xiong Li, Fellow, IEEE, and Hai-Dong Yang

Abstract—The thermal effect has a significant impact on the
performance of a lithium-ion (Li-ion) battery. Thus, modeling
the thermal process, which always involves unknown boundary
heat exchange, is significant to battery management. Two critical
issues should be addressed for the thermal process modeling: 1)
the nominal model which is constructed offline can be updated
efficiently to compensate for any online disturbances, and 2) the
influence of previous and recent spatiotemporal dynamics may
be varying and should be handled properly. Bearing these in
mind, a spatial correlation based incremental learning technique
is designed for spatiotemporal modeling. First, the incremental
learning technique is developed to update the dominant spa-
tial basis functions (DSBFs) of the nominal model, which is
constructed by a time/space separation based method. Then, a
forgetting factor is incorporated into the incremental learning
technique to handle time-varying dynamics. Additionally, the
popular approximator, that is, the radial basis function neural
network, is utilized to identify the low-dimensional temporal
model. Simulations and experiments on a pouch type battery
with boundary heat exchange have demonstrated the accuracy
and efficiency of the proposed modeling method.

Index Terms—battery thermal process, time/space separation,
spatial correlation, incremental learning, forgetting factor

I. INTRODUCTION

PURE electric vehicles (EVs), hybrid electric vehicles
(HEVs), and plug-in hybrid electric vehicles have become

more and more popular due to their little consumption of
oil and little greenhouse emission. As the energy storage and
conversion component, batteries play a significant role in EV
and HEV technology. Among various kinds of batteries, Li-ion
batteries have been widely adopted due to their high theoretical
energy densities and tolerance to cycling [1]. The temperature
effect is the main factor which limits the ability of a Li-ion
battery [2], [3]. When they are charged or discharged, Li-
ion batteries will generate heat which is introduced by the
electrochemical reaction and Ohmic heating. On the contrary,
the generated heat will affect the Li-ion batteries from various
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aspects such as performance, life, capacity, and safety. Thus,
modeling the thermal process accurately will be beneficial to
optimizing, monitoring, and controlling a battery system.

In fact, the thermal process of a Li-ion battery is a typical
distributed parameter system (DPS) which is governed by
partial differential equations (PDEs) [4], [5]. It is difficult
to model because of its infinite-dimensional spatiotemporal
nature and complex nonlinearities. The state-of-the-art models
of the thermal process can be classified into two categories:
1) lumped parameter model, and 2) spatiotemporal model [6].
In the lumped parameter model, the temperature of several
representative space points is estimated instead of the whole
operating space [7]. In [8], the lumped thermal model is
coupled with the equivalent circuit model. The lumped thermal
model is also integrated with the pseudo-two-dimensional
(P2D) model [9], [10]. Although the lumped parameter model
can be used in a battery management system (BMS) for
control purpose easily, it ignores the distributed property.
Because the temperature distribution of the whole space is
more preferable in many practical cases [11], [12], numerous
spatiotemporal models have been proposed to approximate
the temperature distribution over space [2]. Kim et al. [13]
propose a two-dimensional PDE for the thermal process, which
is solved by the finite element method (FEM). Similarly,
the two-dimensional PDE is simulated by the computational
fluid dynamics (CFD) method [14]. However, most numerical
methods such as FEM and CFD require the exact form and
parameters of the PDE to be known. Additionally, they are
time-consuming. Thus, various reduced-order models are pro-
posed [15]. The spectral method reduces the PDEs describing
the electrochemical-thermal behavior of Li-ion battery stacks
into several ordinary differential equations (ODEs) [16]. In
this study, the spatial domains of the positive electrode, the
separator, and the negative electrode are transformed into
a normalized domain. Then, the cosine functions and the
orthogonal collocation are used as the DSBFs and the mod-
el reduction method, respectively. Similarly, the orthogonal
collocation and the Chebyshev polynomials are designed to
simplify the pseudo-three-dimensional model [17], as well as
the stochastic spectral projection and the orthogonal Hermite
polynomials for the electrochemical-thermal model [18]. How-
ever, the spectral method can only work for the parabolic DPSs
with homogeneous boundary conditions, under the assumption
that the preliminary knowledge is known.

Karhunen-Loève (KL) method [19] is another representative
method which has been extensively applied to model the
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thermal process of a Li-ion battery. KL is utilized to simplify
the electrochemical-thermal model of a Li-ion battery [20].
The reduced-order model agrees well with the COMSOL
model [21]. KL is also utilized to model the thermal process
of a one-dimensional battery. In order to compensate for the
model-plant mismatch caused by the spatial nonlinearity and
other uncertainties, a data-based neural model is presented [3].
This method is extended to model a two-dimensional thermal
process, where the extreme learning machine (ELM) is utilized
to construct the temporal model [22].

As described above, most KL based methods focus on
constructing an offline model, while little effort has been
devoted to online modeling. When KL is applied to construct
an online model, the efficiency must be considered. Recently,
an incremental KL modeling is designed to improve the
efficiency of online DPS modeling [23]. By utilizing the
incremental technique, the incremental KL can avoid the
repeated eigenvalue decomposition of the temporal correlation
matrix, and thus significantly reduce the computational cost.
As a result, its efficiency can be promoted. However, it treats
all acquired data equally that may not be effective in many
situations. For example, when a Li-ion battery is working
under unknown boundary heat exchange [24], [25], the bound-
ary conditions are time-dependent. For these processes, the
out-of-date data cannot reflect the real-time spatiotemporal
dynamics. Thus, methods considering all data equally will lose
their effectiveness to some extent. There is an urgent need in
real applications to design an effective method for the online
spatiotemporal modeling of a Li-ion battery under unknown
boundary heat exchange.

Recently, a sliding window based KL (SW-KL) is proposed
to model DPSs with time-dependent boundary conditions [26],
where a sliding window is utilized to capture the recent
spatiotemporal dynamics. A forgetting factor is also introduced
to adjust the influence of previous and recent data. Experiment
comparisons demonstrate the superior performance of SW-
KL and its potential in industrial applications. However, the
computational complexity of SW-KL highly depends on the
number of sensors utilized for data collection. As the higher
accuracy is required, the more sensors will be needed that
will cause the higher computational complexity. The method
should be further upgraded to reduce the computational com-
plexity, while maintaining the required modeling accuracy.

Based on these observations, an upgraded incremental KL
is proposed to model the thermal process with time-dependent
boundary conditions in a Li-ion battery. When constructing
an analytical model of the considered process, we should
address two issues: 1) the DSBFs can be updated efficiently,
and 2) the influence of previous and recent data can be
adjusted effectively. To address the first issue, the incremental
technique is utilized to update the DSBFs recursively instead
of calculating them from scratch. Different from the temporal
correlation based incremental KL (t-incremental KL) [23], a
spatial correlation based incremental KL is proposed, where
a forgetting factor can be attached more easily. By tuning the
forgetting factor, the influence of previous and recent data can
be adjusted effectively. Due to its numerous advantages, such
as super approximation ability and ease of implementation,

f(I,V,T)
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Fig. 1. Modeling of temperature distribution in a battery.

the radial basis function neural network (RBFNN) [27] is
employed to develop the temporal model. The contributions
of this paper are summarized as follows:
• A spatial correlation based incremental KL is proposed.
• By using a forgetting factor, the proposed method can

balance the spatiotemporal dynamics at different instants
effectively.

• Simulations and experiments on a single battery cell and
a composite cell under unknown boundary heat exchange
validate the advantages of the proposed method.

The rest of the paper is organized as follows: the considered
thermal process is described in Section II; The proposed
method is detailed in Section III; Section IV includes the
simulation studies and discussions; The experiment details are
given in Section V, and Section VI summarizes the concluding
remarks.

II. PROBLEM DESCRIPTION

The thickness of the battery cell is much shorter than
that of other dimensions. The temperature variation along
this direction could be neglected. Additionally, it is nearly
impossible to place a sensor along this direction. Thus, the
two-dimensional thermal process of a Li-ion battery, which is
utilized widely [13], [22], [28], is considered:

ρCp
∂T

∂t
=

∂

∂x
(λx

∂T

∂x
) +

∂

∂y
(λy

∂T

∂y
) +Q(x, y, t), (1)

involving boundary condition:

−λx
∂T

∂x
− λy

∂T

∂y
= h(T − Tair), (2)

where T (x, y, t) is the time/space coupled temperature; x and
y are the spatial coordinates; t is the time variable; ρ is the
battery density; Cp is the cell heat capacity; λx and λy are the
thermal conductivities across x and y directions, respectively;
Tair is the environment temperature, and h denotes the convec-
tive coefficient. Note that h is time-varying due to the unknown
boundary heat exchange. Thus, the boundary condition is time-
dependent. Q(x, y, t) is the heat generation term. As shown
in [13], [22], it is described as follows:

Q = aJ [Eoc − (Vp − Vn)− T dEoc
dT

] + aprpi
2
p + anrni

2
n, (3)

where a is the specific area of the battery; J is the current
density; Eoc is the open-circuit potential; V = Vp − Vn is the
cell voltage; ap and an are the specific area of the positive and
negative electrodes, respectively; ip and in denote the linear
current density; rp and rn are the resistances. As can be seen,
Q(x, y, t) is a nonlinear function of the lumped current I ,
voltage V , and T , that is, Q(x, y, t) = f(I, V, T ) [25]. By
combining Q(x, y, t) = f(I, V, T ) with Eqs. (1) and (2), the
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Fig. 2. Framework of the proposed modeling method.

relationship between (I, V ) and T can be described as shown
in Fig. 1. As shown in the figure, Q(x, y, t) is an intermediate
variable that connects (I, V ) with T . That is to say, T can
be considered as generated by I and V . Note that this paper
aims to propose a data-driven model. In addition, it is hard
to measure Q(x, y, t) accurately in real applications. Thus, an
analytical model can be constructed by mapping (I, V ) to T
directly. If the model of Q(x, y, t) = f(I, V, T ) is known, it
can be integrated to enhance the modeling performance.

III. SPATIAL CORRELATION BASED INCREMENTAL
SPATIOTEMPORAL MODELING

A. Framework

As shown in Fig. 2, the proposed modeling method is
time/space separation based. To be specific, the data-driven
method KL is utilized to separate the thermal process in-
to n nominal DSBFs {φi(z)}ni=1 and temporal coefficients
{ai(t)}ni=1. Note that the spatial vector z is equal to (x, y).
When new data/a set of increments is coming, an incremental
learning technique, that is, spatial correlation based incremen-
tal KL is developed to update the previous DSBFs. By a
forgetting factor f , the influence of the previous DSBFs can
be adjusted. Afterward, the new DSBFs are combined with
the increments to tune the temporal coefficients. Then, the
temporal model, which is utilized for prediction, is updated by
the new temporal coefficients. Finally, by time/space synthesis,
the time/space coupled temperature can be predicted.

The main elements of the proposed method will be de-
scribed in detail. First, the spatial correlation based incremen-
tal KL is presented. Next, the forgetting factor is introduced.
Finally, the RBFNN based temporal model is elaborated.

B. Spatial Correlation Based Incremental KL

In the conventional KL [19], in order to construct the
nominal model, L snapshots T ∈ <N×L are sampled as
measurements by N sensors. The spatial correlation matrix
of these snapshots can be calculated as follows:

R̄ =
1

L
TT>. (4)

Afterward, we can obtain the DSBFs by decomposing R̄
with eigenvalue decomposition:

R̄ = U∆U>, (5)

where U is an orthogonal matrix and ∆ is a diagonal matrix.
Subsequently, the n columns of U corresponding to the first
n largest eigenvalues are selected as the DSBFs, those are,
φ̄1(z), φ̄2(z), · · · , φ̄n(z). The matrix U can also be calculated
by decomposing T with singular value decomposition (SVD):

T = UΣV >, (6)

where U and V are two orthogonal matrices, and Σ is a
diagonal matrix. Additionally, the rank-n approximation of T
is described as follows:

T ≈ UnΣnV
>
n , (7)

where Un, Σn, and Vn are the rank-n approximation of U , Σ,
and V , respectively. Σn is a diagonal matrix whose diagonal
values are the first n largest ones among those of Σ. Note that
each column of Un represents a discrete DSBF.

When l new snapshots D ∈ <N×l come, the expanded
matrix [T D] can be obtained. In the conventional KL, SVD
of [T D] is utilized to update the DSBFs, which would be ex-
tremely time-consuming. To avoid repeatedly executing SVD
on the expanded matrix, [T D] is reformulated as follows:[

T D
]
≈
[
Un Q

] [ Σn U>n D
0 R

] [
V >n 0
0 Il

]
,

(8)
where Il ∈ <l×l is an identity matrix; Q is an orthogonal
matrix; R is an upper triangular matrix; Q and R can be
derived by the QR decomposition:

QR = (IN − UnU>n )D, (9)

where IN ∈ <N×N is an identity matrix; Q ∈ <N×m and
R ∈ <m×l; m = min{N, l} is the rank of (IN − UnU>n )D.

Next, we can decompose
[

Σn U>n D
0 R

]
by SVD:[

Σn U>n D
0 R

]
= Ũ Σ̃Ṽ >, (10)

where Ũ and Ṽ are orthogonal matrices; Σ̃ is a diagonal
matrix. By combining Eq. (8) with Eq. (10), we can derive:[

T D
]
≈ (
[
Un Q

]
Ũ)Σ̃(

[
Vn 0
0 I

]
Ṽ )>. (11)

It can easily be known that
[
Un Q

]
is an orthogonal ma-

trix. Consequently, (
[
Un Q

]
Ũ) is an orthogonal matrix.

Similarly, (

[
Vn 0
0 I

]
Ṽ )> is an orthogonal matrix. As a

result, Eq. (11) can approximate the SVD of
[

T D
]
. Thus,

the n columns of (
[
Un Q

]
Ũ) corresponding to the first

n largest singular values can be regarded as the new DSBFs.
In this manner, the efficiency can be improved.

Computational complexity analysis: Based on the above
derivations, the two key steps of the spatial correlation
based incremental KL are: 1) QR decomposition of (IN −
UnU

>
n )D ∈ <N×l, and 2) SVD of

[
Σn U>n D
0 R

]
∈

<(n+m)×(n+l). The QR decomposition requires approximately
O(Nl2) flops and the SVD needs approximately O((n+l)(n+
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m)2) flops. In real applications, the number of DSBFs (i.e.,
n) is very small, that is, n � {L,N, l,m}. Consequently,
O((n+l)(n+m)2) is approximately equal to O(lm2). Because
m = min{N, l}, lm2 < Nl2. In summary, the computa-
tional complexity of the proposed method is O(Nl2). In the
conventional KL, we should conduct SVD on

[
T D

]
∈

<N×(L+l), which needs approximately O((L + l)N2) flops.
As we know, L increases as time progresses. In many cases,
l is less than N . Thus, we can conclude that the proposed
method is more efficient than the conventional KL. In SW-
KL, we should conduct eigenvalue decomposition on the new
correlation matrix, which needs approximately O(N3) flops.
As can be seen, the computational efficiency of the proposed
method is less dependent on N . If many sensors are needed
for high accuracy, the proposed method would be more proper
than SW-KL.

C. Forgetting Factor

When a DPS with time-dependent boundary conditions is
modeled, it is likely that recent data will be more indicative
than the previous data. However, as time progresses, the
previous data can be very large, which will render the model
blind to changes in the data stream. To address this issue,
the contribution of previous data should be down-weighted.
In the conventional KL, the eigenfunctions with big eigen-
values will be selected as the DSBFs. Since the eigenvalues
and eigenfunctions are calculated from the spatial correlation
matrix, this matrix has a significant impact on the DSBFs. A
forgetting factor f (0 ≤ f ≤ 1) can be attached to the spatial
correlation matrix of previous data to reduce its impact [26].

In the proposed method, SVD of
[

Σn U>n D
0 R

]
is

conducted instead of conducting the eigenvalue decomposition
on the spatial correlation matrix of all data. According to
Eqs. (4)-(6), we can find that Σ2 = L∆, where ∆ is the
eigenvalue matrix of the spatial correlation matrix. Thus,
the forgetting factor can be attached to Σn to reduce the
impact of previous data. In this case, we can conclude that
the contribution of previous data to the overall correlation
matrix would be reduced by an additional coefficient f2. The
proof is given as follows. Because [Un Q] is an orthogonal

matrix, the singular values of (
[
Un Q

] [ fΣn U>n D
0 R

]
)

are the same as those of
[
fΣn U>n D

0 R

]
. Furthermore,

calculating the left-singular functions and singular values of

(
[
Un Q

] [ fΣn U>n D
0 R

]
) is equal to calculating the

eigenfunctions and the square roots of the eigenvalues of

(
[
Un Q

][ fΣn U>n D
0 R

]
)(
[
Un Q

][ fΣn U>n D
0 R

]
)>.

Further expanding this equation, we can get that:[
fUnΣn D

] [ fΣ>nU
>
n

D>

]
= f2UnΣnΣnUn

> + DD> ≈

f2TT> + DD>. As a result, the contribution of previous
data is reduced by a coefficient f2.

The forgetting factor f would have an impact on the
proposed method. Similar to [26], the selection process is

formulated as an optimization problem. Different from [26],
the leave-one-out cross-validation is used to increase accuracy.
Additionally, an outstanding evolutionary algorithm called
CoDE [29] is used to generate new solutions. The main steps
are given as follows:

Step 1: Initialize a population of f2 as parents.
Step 2: Utilize CoDE to generate new offsprings.
Step 3: Utilize leave-one-out cross-validation to evaluate

each offspring.
Step 4: Select the best one among each parent and its

offsprings.
Step 5: If the stopping criterion is satisfied, then stop the

procedure, otherwise, go to step 2.

D. Main Advantages of the Spatial Correlation Based Incre-
mental KL

• The proposed method is more efficient and can capture
the recent spatiotemporal dynamics more effectively than
the conventional KL.

• The proposed method can capture the recent spatiotem-
poral dynamics more effectively than t-incremental KL.

• The proposed method would be more efficient than SW-
KL if lots of sensors are needed for high accuracy.

• The proposed method is more efficient than the FEM and
more accurate than the spectral method.

• The proposed method does not require the PDE which
describes the thermal process to be known.

In summary, the proposed method can achieve better accu-
racy and efficiency. Some remarks are summarized as follows:

Remark 1: As shown in [30] and [31], the thermal process
of a composite cell and that of a battery pack can both be
described as parabolic DPSs. Since the proposed method is
based on KL [19], it would be effective to model parabolic
DPSs not limited to a two-dimensional system. Thus, if some
temperature data in a battery pack can be measured, the
proposed method could be used directly. Otherwise, similar
to [32], the model can be decoupled into two submodels.
To model the temperature distribution of the composite cell
containing several cells, the proposed method can be used,
which has been validated by simulations and experiments in
the supplementary file. The temperature variation across the
entire pack can be estimated by a lumped parameter model.
Note that the data for modeling the composite cell can be
acquired mathematically as shown in the following remarks.

Remark 2: The proposed method is based on a data-driven
method, that is, KL. Thus, some sensors are needed to acquire
data. The proposed method is to provide performance pre-
diction for a battery with unknown boundary heat exchange,
which would be difficult for conventional methods. The only
limitation for its application is that a number of sensors are
used. In our future study, we would be devoted to estimating
the time-varying convective coefficient online. As a result, data
can be acquired mathematically. Without the utilization of real
sensors, the proposed method could be added to a BMS more
easily.

Remark 3: To estimate the parameters of a battery, an
electrochemical thermal model can be first constructed math-
ematically [33], [34]. Since the temperature would have a
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Fig. 3. Flowchart of the proposed modeling method.

critical impact on the electrochemical properties, the error
between the output voltage of the model and that of the battery
can be used to evaluate the thermal parameters. By using a
direct search method to minimize the error, we can estimate the
parameters. To further improve the efficiency of optimization,
both the surrogate model [35] and transfer optimization [36]
can be used. Note that the proposed model and the parameter
estimation process would be executed in a parallel manner.

E. Dynamic Modeling of Temporal Coefficients

As shown in Fig. 2, once the temporal coefficients a(t) =
{a1, · · · ,an} are obtained as

ai = φ̄>i
[

T D
]
, i = 1 · · ·n, (12)

a temporal model needs to be constructed for prediction,
where ai is the discrete form of ai(t). Taking the input signal
u(t) = {u1, · · · ,um} into consideration, we can formulate
the temporal model mathematically as follows:

a(t) = F (a(t−1), · · · ,a(t−na),u(t−1), · · · ,u(t−nb))+ε(t),
(13)

where na and nb are the maximum output and input lags,
respectively; F (·) is a nonlinear function used to capture the
temporal dynamics, and ε(t) is the residual error. Various
machine learning techniques, such as ELM [22] and Bayesian
neural network [37], can be utilized to learn F (·).

RBFNN is a kind of interpolation model. It owns numer-
ous merits including ease of implementation and universal
approximation ability [27]. Thus, it is adopted to construct
the temporal model:

Step 1: Specify the input and output at time instant t as
α(t) = [a1(t−na : t−1), · · · , an(t−na : t−1),u1(t−nb :
t− 1), · · · ,um(t−nb : t− 1)] and Γ(t) = [a1(t), · · · ,an(t)],
respectively.

Step 2: Set na = 1, nb = 1, and L = L+ l. Then, arrange
the temporal coefficients derived from L snapshots as training
inputs and outputs:

Ψ =

K(α(2),α(2)) · · · K(α(2),α(L))
...

. . .
...

K(α(L),α(2)) · · · K(α(L),α(L))

 , Γ̃ =

Γ(2)
...

Γ(L)



Fig. 4. Sensor location for sampling data.

(a) (b)
Fig. 5. Input current and h for modeling: (a) Input current, (b) h.

Step 3: Map inputs to outputs by RBFNN as Γ̃ = ΨW,
with

W =

 w1,1 · · · w1,n

...
. . .

...
wL−1,1 · · · wL−1,n

 .
Step 4: Calculate the weight matrix W as: W=

(Ψ>Ψ)−1Ψ>Γ̃.
Step 5: Consequently, the temporal coefficients at time

instant t(t > L), that is, Ât, can be predicted as follows:â1(t)
...

ân(t)

 = W>

K(α(t),α(2))
...

K(α(t),α(L))

 .
K(η,η′) = e−γ‖η−η

′‖22 is the Gaussian radial basis function
(RBF) with γ the spread parameter. wi,j is the weight between
the ith hidden neuron and the jth output neuron. Finally,
the temperature distribution over space can be achieved by
spatiotemporal synthesis: T̂t = [φ̄1, · · · , φ̄n]Ât. Note that the
RBF K(·) in an RBFNN is different from the DSBF φ̄i. The
former is a user-defined kernel function and is used to capture
nonlinear dynamics of time series, while the latter is extracted
from a DPS and is used for spatiotemporal modeling.

In summary, the whole process of the proposed modeling
method is described in Fig. 3.

IV. SIMULATION STUDIES AND DISCUSSIONS

A. Simulation Setup

In this section, an electrochemical-thermal model, where the
P2D model and the two-dimensional thermal model described
in Eq. (1) are coupled, is constructed by a commercial software
package COMSOL. In the model, the electrode materials are
LiFePO4 and graphite. Afterward, it is used to validate the
advantages of the proposed modeling method. The geometry
of the battery is described in Fig. 4. As shown in the figure, 20
probes (i.e., sensors) are allocated uniformly on the surface of
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TABLE I
PARAMETER SETTING OF THE PROPOSED MODELING METHOD

Parameter l f n na nb

Value 5
√
0.3 5 1 1

TABLE II
THE TOTAL RMSES AND CONSUMED TIME OF THE SIMULATION

Method conventional KL SW-KL t-incremental KL proposed method
RMSE 1.5809 0.0875 1.6319 0.0875

Total time (s) 3209.63 57.47 3309.69 44.80

the battery for data sampling. To compare different methods,
the root of mean square error (RMSE) is adopted:

RMSE =

√√√√ 1

NL

N∑
i=1

L∑
j=1

(T (zi, tj)− T̂ (zi, tj))2, (14)

where T (zi, tj) and T̂ (zi, tj) are the measured and estimated
temperature, respectively.

Conventionally, to excite the thermal process adequately,
an appropriate input signal should be utilized. Similar to [5],
a multi-step input current, which is described in Fig. 5 (a),
is used. Similar to [25], h is set to a time-varying value
to simulate the unknown boundary heat exchange, which is
described in Fig. 5 (b). A set of 2880 snapshots is sampled
for online modeling where the sampling interval is 1s. The
main parameters are given in Table I. The modeling accuracy
and efficiency are compared with those of the conventional
KL, t-incremental KL, and SW-KL. The parameter settings of
the three methods are the same as the original papers. For fair
comparison, all modeling methods use RBFNN for temporal
model construction, and n is the same in four methods.

B. Comparisons and Discussions

For all methods, the first 200 snapshots are employed to con-
struct the nominal model, while the rest 2680 ones are utilized
for online prediction. The simulation studies are performed
on a computer with Intel Core (TM) i7-3770 (3.40 GHz)
processor, 32 GB RAM, and Windows10 (64 bit) system. The
total RMSEs and consumed time are summarized in Table II.
As shown in the table, compared with the conventional KL and
t-incremental KL, which consume much time to construct the
temporal model, the proposed modeling method can obtain
better RMSE with less time. It seems that SW-KL can
achieve the similar accuracy. In fact, the proposed method
can improve the efficiency of SW-KL by 22%, which could
be considered as a significant improvement. The time for
obtaining the DSBFs is described in Fig. 6 (a). The result
shows that the proposed method is more efficient than the
other two methods consistently. Furthermore, the results of
the conventional KL and the proposed method in terms of
online RMSE are shown in Fig. 6 (b), which demonstrate
that the proposed method is better than the conventional KL
consistently. Since the main advantage of the proposed method
over SW-KL is the low computational complexity, the RMSE
of SW-KL is not shown in Fig. 6 (b). In summary, the proposed
modeling method is accurate and efficient.

(a) (b)
Fig. 6. Performance comparison: (a) Running time, (b) online RMSE.

computer

BTS integrated 

battery tester

thermal chamber

battery management 

system

lithium-ion battery

Fig. 7. Experiment platform.

V. EXPERIMENT VALIDATION

A. Experiment Setup

To further validate the advantages of the proposed method,
some data is sampled from a real experiment where a pouch
type Li-ion battery with LiFePO4/graphite is used. The thick-
ness, length, and width of the battery are 7.83E-3m, 0.24m,
and 0.18m, respectively. The nominal capacity, nominal volt-
age, charge cut-off voltage, and discharge cut-off voltage are
60Ah, 3.2V, 3.65V, and 2V, respectively. A platform composed
of a battery thermal system (BTS) integrated battery tester, a
thermal chamber, a BMS module, and a computer as shown
in Fig. 7 is utilized to charge and discharge the battery. The
same current described in Fig. 5 (a) is generated in the exper-
iment. The BTS integrated battery tester is used to generate
charge/discharge current. In the thermal chamber, a steady
ambient temperature 25 °C can be guaranteed. As shown in
Fig. 4, 20 sensors are allocated uniformly on the surface of
the battery. Additionally, the BMS module is used to collect
the temperature data. In the experiment, a host computer is
used to integrate these devices together. Note that a forced-air
convective cooling is employed as the unknown boundary heat
exchange. Indeed, h can be identified or estimated. However,
in the proposed method, the exact value of h is not needed.
As the same as Section IV, a set of 2880 snapshots is sampled
for online modeling.

B. Experiment Results

The 2880 snapshots are utilized to evaluate the performance
of the proposed method. Similarly, the first 200 snapshots
are utilized to construct the nominal model, while the rest
2680 ones are used for online performance evaluation. First,
we compare the performance of the proposed method with

wangb
高亮
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TABLE III
THE TOTAL RMSES AND CONSUMED TIME OF THE EXPERIMENT

Method conventional KL SW-KL t-incremental KL proposed method
RMSE 0.8312 0.0451 1.1149 0.0444

Total time (s) 3064.2469 53.55 3104.46 42.18

(a) (b)

(c)
Fig. 8. Measured temperature distribution: (a) 960s, (b) 1920s, (c) 2880s.

(a) (b)
Fig. 9. Prediction error at 960s: (a) conventional KL, (b) proposed method.

(a) (b)
Fig. 10. Prediction error at 1920s: (a) conventional KL, (b) proposed method.

(a) (b)
Fig. 11. Prediction error at 2880s: (a) conventional KL, (b) proposed method.

that of the conventional KL, t-incremental KL, and SW-KL
according to the RMSE and consumed time. As shown in
Table III, the proposed method performs better than the other
three methods. Specifically, the efficiency of SW-KL can be
improved by 21%, which could be considered as a significant
improvement.

To further analyze the advantages of the proposed method,
we compare the distributed prediction error of the proposed
method with that of the conventional KL. The measured tem-
perature distributions at 960s, 1920s, and 2880s are described
in Fig. 8. The prediction errors are described in Figs. 9, 10, and
11. As shown in Fig. 9, the advantages of the proposed method
over the conventional KL is not significant. That is to say,
when the size of the data set is not big, the conventional KL
can capture the spatiotemporal dynamics. However, when time
progresses, the performance of the conventional KL would
become worse and worse. The reason is that it cannot capture
the recent spatiotemporal dynamics. On the contrary, the
proposed method can achieve it successfully. The experiment
results are in line with the analyses in Section III. In summary,
the proposed method is effective to model the thermal process
of a Li-ion battery under unknown boundary heat exchange.

For the sake of paper length, some further discussions are
referred to the supplementary file.

VI. CONCLUSIONS

Modeling of the thermal process of a Li-ion battery is of
significance. To this end, this paper proposes a spatial correla-
tion based incremental learning for spatiotemporal modeling.
The proposed method is KL based and includes three phases.
In phase one, a spatial correlation based incremental KL is
designed to update the DSBFs of the nominal model efficient-
ly. By using a forgetting factor in the incremental KL, the
recent spatiotemporal dynamics can be captured effectively. In
phase two, an RBFNN based temporal model is constructed for
prediction. Finally, by time/space synthesis, the temperature
distribution can be estimated. Simulations and experiments
verify that:
• The proposed method shows better or at least competitive

performance against other methods.
• The proposed method can be applied to a single battery

cell as well as a composite cell successfully.
In fact, the proposed model is a group of ODEs, which is

simpler than the original PDE. However, it still could be a
bit complex for control design as the control design usually
requires linear models. Further simplification is needed for real
control application.

Of course, as a data-driven method, some sensors are
needed for data acquisition. Note that the aim of this paper
is to enhance the conventional data-driven methods to model
thermal processes with unknown boundary heat exchange. The
reduction of sensors would be considered in the future work
as summarized in Remark 2 and Remark 3.

In addition, since the proposed method is effective for a
single battery cell as well as a composite cell, it would be
interesting to apply it to a battery pack and a BMS. This topic
can also be considered as the future work and the potential
techniques are clarified in Remark 1.
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