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Abstract—Lithium-ion batteries are widely used as power
sources in industrial applications. Electrochemical models and
simulations are crucial to disclose many details that cannot be
directly measured through experiments. Parameter identification
of an accurate electrochemical model is much more cost-effective
than direct and destructive measurement methods. However, the
complex structure and strong nonlinearity of electrochemical
models will make the parameter identification very difficult.
Additionally, time-consuming electrochemical simulations can
significantly limit the identification efficiency. This paper pro-
poses a surrogate-model-based scheme to achieve high-efficiency
parameter identification of an electrochemical battery model. To
be specific, the proposed method is implemented by the close
integration of an evolutionary algorithm and a surrogate model.
A sensitivity-based identification strategy is first designed to
alleviate the difficulty of optimization. Then, a surrogate model
is developed from historical data to gradually approach the
objective function used for parameter evaluations. Finally, an
evolutionary algorithm is employed to find promising solutions
by minimizing the output of the surrogate model. Simulations
and experimental studies demonstrate the effectiveness and high
efficiency of the proposed method.

Index Terms—Lithium-ion battery, parameter identification,
evolutionary algorithm, surrogate model

I. INTRODUCTION

W ITH the increasing depletion of fossil energy and
environmental degradation, renewable energy has been

rapidly developed. Lithium-ion batteries (LIBs) are widely
used as power sources in industrial applications [1]. This suc-
cess is mainly due to their high energy density, tiny memory
effect, and long cycling life [2]. However, the performance of
a battery is limited by overheating and degradation, which may
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cause potential hazards [3]. Thus, battery management systems
(BMSs) are indispensable for the regulation of batteries [4].
To design a BMS, the behavior and internal characteristics of
a battery should be simulated and analyzed through a well-
performed model. In general, LIB models include equiva-
lent circuit models [5], electrochemical impedance spectrum
models [6], electrochemical models (EMs) [7], and data-
driven models [8]. EMs are known to have high simulation
accuracy since they can reflect physical phenomena based on
physical laws. Also, the parameters of EMs can be exactly
matched with the actual physical parameters of batteries [9].
The pseudo-two-dimensional (P2D) model is one of the most
representative EMs [10]. The P2D model governed by partial
differential equations (PDEs) is highly complex and nonlinear.
If the model parameters are properly specified, the internal
characteristics of LIBs could be accurately investigated by
electrochemical simulations.

During the last decades, many parameter identification
methods have been proposed including least square methods
[11], recursive least square methods [12], Gaussian-Newton
methods [13], Levenberg-Marquardt methods [14], and evolu-
tionary algorithms (EAs) [15], [16].

If gradient-based methods are adopted for parameter iden-
tification and error minimization in the rigorous P2D model,
the following challenges may arise [17]:

• It is hard to identify a proper initial value.
• Appropriate step sizes are difficult to be determined.
• Simple closed-form objective functions may be unavail-

able.
• Local optima may seriously impede the optimization.
Although the ensemble Kalman filter can be used for

parameter identification of high-order models [18], it may
have two limitations. Firstly, the probability density function
assumed by the ensemble Kalman filter is Gaussian. However,
this assumption may not be satisfied for the parameter identi-
fication of the P2D model [19]. Additionally, filter divergence
may cause fast-growing computational errors [20].

Recent years have witnessed an increasing interest in
the topic of EAs [21]. For complex optimization problems,
gradient-free EAs can be used without the closed-form
expression of the objective function. From this perspective,
EAs are exactly suitable for parameter identification of the
P2D model with high complexity and strong nonlinearity.
Rahman et al. used the particle swarm optimization (PSO)
to estimate four main dynamic parameters of a LiCoO2

battery [22]. Li et al. obtained 18 critical parameters
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Fig. 1. Schematic of the P2D model.

of a LiMnO4 battery using the genetic algorithm [17].
However, most studies use traditional EAs directly, which
require a large number of simulation runs for parameter
evaluations. Unfortunately, numerical simulations of the P2D
model are computationally expensive. Thus, it is urgent to
improve the computational efficiency of EAs. Conventionally,
the computational efficiency is evaluated in terms of the
computation time used to identify the parameters. Setting
appropriate control parameters is another tricky issue for
traditional EAs. Those control parameters can considerably
affect the optimization results and tuning them is tedious.
Thus, a teaching-learning-based optimization (TLBO) with a
simple structure and few control parameters is adopted in this
study.

Based on these observations, we propose a surrogate-
assisted teaching-learning-based optimization (SA-TLBO) in
this paper. In the proposed method, the TLBO is compactly
combined with a data-based surrogate model to achieve effi-
cient and accurate parameter identification of the complex P2D
model. The main contributions of this paper are summarized
as follows:

• A sensitivity-based identification strategy is designed to
alleviate the difficulty of optimization and guarantee
successful simulations.

• A surrogate model is developed to gradually approach the
objective function by leveraging historical data.

• A TLBO is integrated with the surrogate model by
which inferior solutions would be filtered out and thus
computational efficiency can be improved.

The remainder of this paper is arranged as follows: The
P2D model is described in Section II; The main techniques
are discussed in Section III; Section IV shows the framework
and procedures of the proposed method; Simulations and
experimental validations are given in Section V; Section VI
summarizes the conclusion.

II. PROBLEM DESCRIPTION

A. Pseudo-two-dimensional Model

As one of the most representative electrochemical LIB
models, the P2D model has been thoroughly tested and
validated [10]. As shown in Fig. 1, the behavior of porous
electrodes is described by spherical particles surrounded by the

electrolyte. When a battery is working, the intercalation and
de-intercalation of lithium-ions (Li+) are performed through
the surface of particles. The P2D model involves a spatial
dimension x between two electrodes and another dimension r
inside particles. Since the dimension r is relatively small, this
model cannot be strictly defined as a two-dimensional model.
Thus, it is generally called the “pseudo-two-dimensional”
model.

The P2D model is governed by a set of tightly coupled
PDEs given in Table I. The specific meanings of the model
parameters and variables can be seen in Table II. More details
about the P2D model can be found in [23]. The terminal
voltage is designated as the model output, which can be
defined as follows:

Û = ϕs|x=0 − ϕs|x=Lp+Lsep+Ln
(1)

B. Objective Function

For accurate simulations and analysis, a set of model
parameters should be identified. The parameter identification
can be formulated as the following optimization problem:

min
~θ

{
e(~θ) : ~θ ∈ Rd, pi ∈ [LBi, UBi]

}
(2)

where e(~θ) : Rd 7→ RN represents the error between the model
output voltages and the reference voltages; N is the number
of data points; ~θ denotes the parameter vector to be identified;
pi is one of the unknown parameters and ~θ = (p1, p2, ..., pd);
LBi and UBi are the lower and upper bounds of pi; d is the
dimension of ~θ.

As the parameter identification can be formulated as an
optimization problem, a feasible region, namely the solution
space S that contains the optimal solution, should be set
beforehand. By using the upper and lower bounds to define
the range of a parameter, S can be expressed as the following
Cartesian product [25], [26]:

S =
d∏
i=1

[LBi, UBi] (3)

=
{
~θ ∈ Rd

∣∣∣LBi ≤ pi ≤ UBi, i = 1, 2, · · · , d
}

In this paper, the error between the output voltages and
the reference voltages is formulated as the objective (cost)
function:

e
(
~θ
)

=
∥∥∥Uref−Û (~θ)∥∥∥

2
(4)

where Uref denotes the reference voltages. Some similar
objective functions have been adopted by various methods
[15], [22], [27].

III. SURROGATE-MODEL-ASSISTED EVOLUTIONARY
OPTIMIZATION

For parameter identification of the P2D model, the following
challenges may arise:

• Multi-scale characteristics of the model parameters in-
crease the difficulty of parameter identification.
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TABLE I
GOVERNING EQUATIONS OF THE P2D MODEL

Governing equations∗ Boundary conditions
Electrodes

∂Cs,j

∂t
+ 1
r2

∂
∂r

(−Ds,jr2 ∂Cs,j

∂r
) = 0

∂Cs,j

∂r

∣∣∣
r=0

= 0

Ds,j
∂Cs,j

∂r

∣∣∣
r=Rj

= −Jj

∂
∂x
σeffj

∂ϕs
∂x

=ajFJj

∂ϕs
∂x

∣∣∣
x=0

= − I

σ
eff
p

∂ϕs
∂x

∣∣∣
x=L−

p

= 0

∂ϕs
∂x

∣∣∣
x=Lp+L−

sep

= 0

∂ϕs
∂x

∣∣∣
x=Lp+Lsep+Ln

= − I

σ
eff
n

εe,j
∂Ce
∂t

= ∂
∂x

(Deffe,j
∂Ce
∂x

) + aj(1− t+)Jj

∂Ce
∂x

∣∣∣
x=0

= ∂Ce
∂x

∣∣∣
x=Lp+Lsep+Ln

= 0

−Deffe,p
∂Ce
∂x

∣∣∣
x=L−

p

= −Deffe,sep
∂Ce
∂x

∣∣∣
x=L+

p

−Deffe,sep
∂Ce
∂x

∣∣∣
x=Lp+L−

sep

= −Deffe,n
∂Ce
∂x

∣∣∣
x=Lp+L+

sep

−σeffj
∂ϕs
∂x
− κeffe,j

∂ϕe
∂x

+
2κ

eff
e,j RT

F
(1− t+) ∂ lnCe

∂x
= I

∂ϕe
∂x

∣∣∣
x=0

= ∂ϕe
∂x

∣∣∣
x=Lp+Lsep+Ln

= 0

−κp ∂ϕe
∂x

∣∣∣
x=L−

p

= −κsep ∂ϕe
∂x

∣∣∣
x=L+

p

−κsep ∂ϕe
∂x

∣∣∣
x=Lp+L−

sep

= −κn ∂ϕe
∂x

∣∣∣
x=Lp+L+

sep

Separator

εe,sep
∂Ce
∂t

= ∂
∂x

(Deffe,sep
∂Ce
∂x

)
Ce|x=L−

p
= Ce|x=L+

p

Ce|x=Lp+L−
sep

= Ce|x=Lp+L+
sep

−κeffe,sep
∂ϕe
∂x

+
2κeff

e,sepR̄T

F
(1− t+) ∂ lnCe

∂x
= I

ϕe|x=L−
p

= ϕe|x=L+
p

ϕe|x=Lp+L−
sep

= ϕe|x=Lp+L+
sep

Solid-liquid interface
Jj = kj(Ce,j)

αa,j (Csmax,j − Cse,j)αa,j (Cse,j)
αc,j [exp(

αa,jF

R̄T
η)− exp(

−αc,jF

R̄T
ηj)]

ηj = ϕs,j − ϕe,j − Eocv,j
∗Subscript j represents the positive electrode p or negative electrode n.
∗Subscript sep represents the separator.

• Simulations of the P2D model are extremely time-
consuming.

• Local optima may seriously impede the optimization.

To address these issues, the following three techniques are
developed.

A. Sensitivity-Based Identification Strategy

1) Parameter Classification: The parameters to be esti-
mated can be divided into two types: static parameters and
dynamic parameters.

The static parameters based on the battery geometries and
manufacturing processes are determined in the production
process. If there are no pathological changes (e.g., severe
overheating, excessive aging, and mechanical damage) inside
a battery, the static parameters may not change significantly.

The dynamic parameters, which depend on the electrochem-
ical properties of the battery materials, would vary with the
change of lithium-ion concentration or reaction temperature in
different operating modes. If a large external current is applied,
the internal reactions would be accelerated and the polarization
phenomena would be intensified. Subsequently, the dynamic
parameters may change significantly and then cause severe
effects on the output voltages.

The static parameters include the thickness of different
regions, the radius of particles, the volume fraction, and the
initial Li+ concentration in electrolyte-phase. The dynamic
parameters include the conductivity of electrodes, the diffusion
coefficient in electrolyte-phase and solid-phase, the reaction
rate coefficient of electrodes, and the Li+ transference number
[17]. The other related factors such as the maximum concen-
tration of Li+ and the equilibrium potential can be obtained
from [28] and [29].

2) Classified Identification Scheme: Based on the previous
discussion, the static and dynamic parameters can thus be
identified by two specific operating modes, respectively. Some
similar studies can be found in [17] and [30].

For the static parameters, a constant current corresponding
to 0.01C can be used for identification. With such a small
current, only slow electrochemical reactions occur inside the
battery. Variations of the dynamic parameters may not cause
obvious interference to the output voltages. Thus, the static
parameters play a major role and can be identified first.

For the dynamic parameters, a constant current corre-
sponding to 3C can be used for identification. With this
relatively large current, the dynamic parameters gradually
become sensitive due to rapid electrochemical reactions inside
the battery. In this case, dynamic parameters play a dominant
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TABLE II
PARAMETERS AND VARIABLES

Notation Unit Description [24]
L m Thickness
R m Radius of particles
εs − Volume fraction
εe − Volume fraction
Ce0 mol m−3 Initial Li+ concentration
σ S m−1 Conductivity of electrodes
De m2 s−1 Diffusion coefficient
Ds m2 s−1 Diffusion coefficient
k m2.5mol−0.5s−1 Reaction rate coefficient of electrodes
t+ − Li+ transference number
σeff S m−1 Effective conductivity of electrodes
Deff

e m2 s−1 Effective diffusion coefficient
Ce mol m−3 Li+ concentration
r m Radial coordinate
x m Spatial coordinate
J mol m−2s−1 Pore wall flux on particle surface
Cs0 mol m−3 Initial Li+ concentration in particles
Cse mol m−3 Li+ concentration on particle surface
Csmax mol m−3 Maximum concentration of Li+ in particles
a m−1 Specific surface area of particles
is A m−2 Current density
ie A m−2 Current density
I A m−2 Total current density inside a battery
ϕs V Potential
ϕe V Potential
κe S m−2 Ionic conductivity
κeff
e S m−2 Effective ionic conductivity
αa − Charge transfer coefficient of anode
αc − Charge transfer coefficient of cathode
η V Over-potential
Eocv V Equilibrium potential
Û V Terminal voltage
T K Temperature
R̄ J mol−1K−1 Universal gas constant
F C mol−1 Faraday’s constant
Subscript
s − Solid-phase
e − Electrolyte-phase

P2D        
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Battery
)(tI

e
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Û

Surrogate

Model
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Modeling Replace

Fig. 2. Schematic of the surrogate modeling.

role and can be identified. Note that the previously identified
static parameters can be directly used as known values.

3) Effective Ranges of Model Parameters: The P2D model
is established in COMSOL Multiphysics using the battery
module. Since unreasonable parameter values would cause
unsuccessful simulations, the parameter ranges involving phys-
ical meanings should be set carefully. The effective bounds of
the model parameters are mainly obtained from experiments
and [17]. Setting details are given in Table III.

B. Surrogate-Model-Based Parameter Prescreening

To improve computational efficiency, a surrogate-model-
based parameter prescreening is designed. Among various
surrogate models, the Kriging model (also known as the
Gaussian process) [31] is adopted in this paper. The main
reason [32] is that the prediction uncertainty of the Kriging
model has a good mathematical background, which can be
used for prescreening methods [33] in surrogate-model-based
optimization. The predictive distribution of the objective func-
tion value can be obtained from the Kriging model constructed
by historical data. Afterward, the mean and variance of this
distribution can be effectively used to guide the filling of new
data.

As shown in Fig. 2, the candidate parameter vectors and
the corresponding simulation errors are the input and output
of the surrogate model, respectively. The surrogate model can
approach the objective function gradually as the historical data
increases. Consequently, it can be used to roughly evaluate the
performance of candidate solutions. In this manner, inferior
solutions can be filtered out without the P2D model simula-
tions. The computation time of the data-based surrogate model
can be almost ignored compared to the P2D model. Since the
number of the P2D model simulations is significantly reduced,
the computational efficiency of parameter identification can be
considerably improved. Note that Θtrain =

{
~θ1, ~θ2, ~θ3, ...

}
denotes the training solution group.

C. TLBO-Based Optimization

Since the P2D model has no simple closed-form ex-
pressions, gradient information of the objective function is
unavailable. Thus, gradient-based methods could hardly be
applied to identify the model parameters. Additionally, the
optimization problem described in Eq. (2) may contain many
local optima which can remarkably hinder the identification.
In the proposed method, a gradient-free TLBO is employed to
escape from local optima and approach the globally optimal
solution.

The TLBO includes a teaching phase and a learning phase
[34]. A brief description is shown as follows:

1) Teaching Phase: Each student represents a candidate
solution ~θi(i = 1, 2, ..., NP ). Students with initial information
first learn from the teacher and then update their memories.
This process can be formulated mathematically as follows:

~θi,new = ~θi,old + rand · (~θteacher − TF · ~θmean) (5)

where NP denotes the size of population (i.e., candidate
solution group Θcandi); ~θi,old denotes the solution before
learning; ~θi,new represents the solution after updating; rand
is a random number uniformly distributed in [0,1]; ~θteacher
denotes the teacher (i.e., the best student so far). ~θmean denotes
the mean vector of all candidate solutions; TF is a learning
factor randomly assigned as 1 or 2.
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2) Learning Phase: Each student ~θi randomly learns from
another student ~θj and then updates memories. The updating
rules can be expressed as follows:

~θi,new =

{
~θi,old + rand · (~θj − ~θi,old), if f(~θj) < f(~θi,old)
~θi,old + rand · (~θi,old − ~θj), if f(~θi,old) ≤ f(~θj)

(6)

IV. FRAMEWORK AND CRITICAL PROCEDURES

A. Framework Design

Final 
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Fig. 3. Framework of the proposed SA-TLBO.

The framework of the proposed method is shown in Fig.
3. The Latin Hypercube Sampling (LHS) [35] is employed
to generate the candidate solution group Θcandi namely
the feasible parameter set. LHS is a statistical method for
generating a near-random sample of parameter values from
a multi-dimensional distribution. Details can be found in [35],
[36].

In the surrogate evaluation block, the TLBO is integrated
with the surrogate model to optimize the feasible parameter set
and filter out inferior candidate solutions. Given a new input
solution ~θ from Θcandi, the predictive output Ê of the Kriging
model follows the Gaussian distribution [31]:

Ê ∼ N(ê(~θ), s2(~θ)) (7)

where ê denotes the mean value; s is the standard deviation.
For optimization algorithms using the Kriging model, many
infill sampling criteria have been developed so far [37], [38].
As one of the most representative criteria, the lower confidence
bound (LCB) criterion [39] is adopted in this study. To fully
search the solution space with a balance between exploration
and exploitation, the following LCB function is used as the
objective function for the TLBO-based optimization.

êlcb = ê− ωs (8)

where ω is generally set to 2 [32]. After the surrogate
evaluation, the promising solutions ~θpro are collected to form
the final parameter set.

In the real evaluation block, the promising solutions are
evaluated by the P2D model simulations. Afterward, the data-
pair {~θpro, e(~θpro)} can be added to the training solution group

Θtrain for surrogate model updating. Once the predefined
termination conditions are met, the optimal solution ~θopti can
be obtained from the final parameter set.

To avoid being trapped in local optima and approach the
globally optimal solution, the TLBO is applied for parame-
ter identification. Traditional EAs update their memories by
randomly recombining the candidate solutions stored in them.
However, such an update mode requires a mass of simulation
runs for candidate evaluations. If a computationally expensive
model such as the P2D model is used, parameter identification
using EAs would be time-consuming. Due to the surrogate-
model-based parameter prescreening, the proposed method is
more efficient than traditional EAs.

Remark 1. The two principal classes of system iden-
tification techniques are “parametric” and “non-parametric”
identification methods [21], [40]. In this paper, a framework
that integrates a heuristic algorithm and a surrogate model
is proposed for accurate and efficient parameter identifica-
tion. From this perspective, the proposed method might be
considered as a kind of “parametric” identification method.
Well-known “parametric” identification methods include least-
square methods and maximum likelihood estimation, etc [21],
[41]. Compared with the least-square methods, the proposed
method can be used without a closed-form solution of the P2D
model related to parameters. Compared with the maximum
likelihood estimation, the proposed method does not rely on
the likelihood function, which is difficult to construct while
the complex P2D model is used.

B. Critical Procedures

As described in the framework, the optimal solution θopti
can be gradually approached by two-stage optimization.
To specify the execution steps of the proposed method,
a flowchart is given in Fig. 4. Additionally, the critical
procedures are summarized as follows:

Generate Training 
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Parameter Set

Real Evaluation and 

Surrogate Model 

Updating
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Optimization

Select  Promising 

Solution

Termination 

Conditions?

End
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YES
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Fig. 4. Flowchart of the proposed SA-TLBO.

S1: Generate an initial training solution group Θtrain by the
P2D model simulations.

S2: Construct the Kriging model using the training data.
S3: Generate a candidate solution group Θcandi from the

solution space S (described in Eq. (3)).
S4: Optimize the feasible parameter set based on the combi-

nation of the TLBO and the surrogate model.
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S5: Obtain the promising solutions ~θpro and establish a final
parameter set.

S6: Evaluate ~θpro by the P2D model simulations and infill
new training data into Θtrain.

S7: If the final termination conditions are met, the best
historical value of ~θpro is taken as the optimal solution
~θopti; otherwise, return to S2.

V. VALIDATIONS AND DISCUSSIONS

A. Simulation-Based Validations

To validate the identified results directly, a simulation
system of a 20Ah LiMn2O4 / Graphite pouch battery was
established in the COMSOL Multiphysics. A set of reference
parameters [17] were taken to generate reference voltages
under different operating modes. The reference voltages under
0.01C and 3C were used to identify the static parameters and
dynamic parameters, respectively. The identified results were
validated by the reference voltages under 1C, 2C, and the
Urban Dynamometer Driving Schedule (UDDS) mode.

The program was run in the MATLAB based on a worksta-
tion with Intel (R) Xeon (R) E5-1620 CPU and 8GB RAM.
The specific settings of the proposed method are summarized
as follows:

• Initial size of the training solution group Θtrain (men-
tioned in Fig. 2): Nt0 = 40.

• Initial size of the candidate solution group Θcandi (initial
population size of the TLBO): NP = 500.

• The maximum number of iterations of the TLBO: MT =
200.

• The maximum number of the P2D simulation runs for
the entire identification: MR = 100.

• Termination conditions of the TLBO-based optimization:
the LCB function value êlcb <= 0.03 (mentioned in Eq.
(8)) or MT = 200 is reached.

• Final termination conditions: the objective function value
e <= 0.01 (mentioned in Eq. (4)) or MR = 100 is
reached.

As shown in Table III, most of the identified parameters
are close to the reference parameters. Note that the identified
values of σp and σn are less accurate than others, which is
possibly due to their low sensitivities to the output voltages.
The conductivity of the electrode has special material proper-
ties. Only changes in conductivity exceeding 30-40 S/m can
cause significant effects on the output voltages [42].

As shown in Figs. 5 - 6, the simulation data under 0.01C,
1C, 2C, and 3C show good agreement with the reference
voltages. The input signals mentioned above are constant while
the applied current used in practical applications is often
randomly changed based on the practical scenario. Thus, we
further investigated the performance of the identified results
under the complex UDDS operating mode. As shown in Fig.
7, the identified parameters achieve encouraging performance.
Table IV compares the proposed method with peer methods
based on the computation time which is consumed to achieve
the predefined accuracy on the training data. As shown in
the table, peer methods require much more real evaluations
and computation time than the proposed method. That is to
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Fig. 5. Validation results of the proposed method using 0.01C and 3C
reference voltages: (a) (b) voltage comparison, (c) (d) relative errors.
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Fig. 6. Validation results of the proposed method using 1C and 2C reference
voltages: (a) (b) voltage comparison, (c) (d) relative errors.
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Fig. 7. Validation results of the proposed method using the UDDS reference
voltages: (a) voltage comparison, (b) relative errors.
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TABLE III
IDENTIFIED RESULTS FROM THE SIMULATION SYSTEM

Notation Unit Effective Reference Identified
Ranges Values Results

Static
Parameters
Lp m [180e-6,197e-6] 183e-6 180.70e-6
Lsep m [50e-6,66e-6] 52e-6 53.581e-6
Ln m [92e-6,125e-6] 100e-6 104.32e-6
Rp m [5e-6,1e-5] 8e-6 6.9741e-6
Rn m [1e-5,1.6e-5] 1.25e-5 1.3730e-5
εs,p − [0.2,0.5] 0.297 0.2509
εs,n − [0.3,0.5] 0.477 0.4235
εe,p − [0.15,0.3] 0.259 0.2575
εe,n − [0.15,0.3] 0.172 0.2333
Ce0 mol m−3 [1800,2200] 2000 1954.3
Cs0,p mol m−3 [2000,6500] 3900 4020.5
Cs0,n mol m−3 [8000,20000] 14870 14645.3
Csmax,p mol m−3 − 22860 22860
Csmax,n mol m−3 − 26390 26390
Dynamic
Parameters
σp S m−1 [1,50] 3.8 18.6395
σn S m−1 [90,200] 100 127.3387
De m2s−1 [1e-11,2e-10] 7.5e-11 7.5115e-11
Ds,p m2s−1 [5e-14,2e-13] 1e-13 8.5358e-14
Ds,n m2s−1 [3e-13,7e-13] 5e-13 5.3864e-13
kp m2.5mol−0.5s−1 [8e-12,4e-11] 2e-11 1.7625e-11
kn m2.5mol−0.5s−1 [8e-12,4e-11] 2e-11 2.0604e-11
t+ − [0.2,0.5] 0.363 0.3001

say, the proposed method is able to identify the parameters
of the complex P2D model more quickly. Additionally, the
proposed method was further compared with the peer methods
according to the root mean square error (RMSE) and the mean
absolute error (MAE) on the test data. As shown in Table V,
the proposed method is more accurate than peer methods in
terms of RMSE and MAE.

RMSE =

√√√√ 1

N

N∑
i=1

(
Uref

i − Ûi

)2

MAE =
1

N

N∑
i=1

∣∣∣Uref
i − Ûi

∣∣∣

TABLE IV
COMPUTATION TIME OF DIFFERENT METHOD

The number of real evaluations Computation time(s)
Static parameters

Initial training data: 40
Identification process: 53

SA-TLBO Dynamic parameters 4352
Initial training data: 40

Identification process: 76
Sum: 209

TLBO 3360 69324
PSO 3802 80229

TABLE V
TEST ACCURACY OF DIFFERENT METHOD

1C 2C UDDS
RMSE MAE RMSE MAE RMSE MAE

SA-TLBO 0.0154 0.0129 0.0198 0.0162 0.0489 0.0324
TLBO 0.0161 0.0146 0.0215 0.0181 0.0717 0.0522
PSO 0.0175 0.0137 0.0233 0.0199 0.0740 0.0580

B. Experiment-Based Validations

To validate the performance of the proposed method in the
real world, some data were sampled from real experiments
where a new 20Ah LiFePO4 / Graphite pouch lithium-ion
battery was used. The experimental configuration and the test
bench can be seen in Figs. 8 - 9. Specifically, the battery test
system (BTS) was employed to provide different operating
modes. The thermal chamber was used to provide a stable
ambient temperature. The measured data could be collected
by the BMS. All these devices were integrated through a
host computer. As with the simulation-based validations, the
experimental voltages under 0.01C and 3C were used to
identify parameters, while the remaining data were used for
validations. Due to the complex dynamics of a real battery,
the true parameter values are unknown in advance. Thus, the
effective ranges of the model parameters were roughly set
according to [43].

BMS

Battery

Thermal chamber

BTS 300A/60V Computer

Power Supply

Current and 
Voltage data

Data

Control signal

Control signal

Control signal

Ambient temperature

+

-

Fig. 8. Configuration of the experimental platform.

computer

battery testing 

system

thermal chamber

battery management 

system

lithium-ion battery

Fig. 9. The experimental test bench.

The identified parameter values based on experimental
voltages are given in Table VI. Validation results of the
proposed method using 0.01C, 1C, 2C, and 3C experimental
voltages can be seen in Figs. 10 - 11. Despite the noticeable
rising errors at the end of voltage curves, the relative errors are
generally less than 6%. As shown in Fig. 12, the simulation
voltages show good agreement with the experimental voltages
under the UDDS mode and the relative errors are generally
less than 5%.

C. Discussion of Results

Validation results suggest the outstanding performance of
the proposed method both in the simulation system and
experiments in terms of accuracy and efficiency. However,
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Fig. 10. Validation results of the proposed method using 0.01C experimental
voltages: (a) voltage comparison, (b) relative errors
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Fig. 11. Validation results of the proposed method using 1C, 2C, and 3C
experimental voltages: (a) voltage comparison, (b) relative errors

the overall accuracy in the experimental study is lower than
that in the simulation study. Additionally, the fitting errors
of experimental voltages increase rapidly at the end of the
voltage curves. Possible reasons for this may be battery
degradation and unknown disturbances. The battery used in
experiments may have capacity degradation resulted from the
aging phenomenon. Since the P2D model cannot describe
degradation without the aid of a thermal model [44], the loss of
accuracy in capacity-related parameters may cause test errors.

As a heuristic algorithm, the TLBO can approach the
globally optimal solution without being impeded by local
optima. With the guidance of the surrogate model, inferior
solutions can be filtered out by TLBO-based optimization. In
this manner, only a few promising solutions are evaluated by
the P2D model simulations. Since the number of simulation
runs is considerably reduced, the proposed SA-TLBO requires
much less computation cost compared with traditional EAs
(i.e., PSO and TLBO).
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Fig. 12. Validation results of the proposed method using the UDDS
experimental voltages: (a) voltage comparison, (b) relative errors

TABLE VI
IDENTIFIED RESULTS FROM EXPERIMENTS

Notation Unit Effective Identified
Ranges Results

Static
Parameters
Lp m [5e-5,9e-5] 7.1310e-5
Lsep m [1e-5,8e-5] 2.4730e-5
Ln m [1e-5,5e-5] 3.3460e-5
Rp m [1e-6,5e-6] 3.9621e-6
Rn m [1e-8,1e-7] 3.8620e-8
εs,p − [0.2,0.5] 0.4122
εs,n − [0.2,0.6] 0.5421
εe,p − [0.2,0.5] 0.3521
εe,n − [0.2,0.5] 0.3454
Ce0 mol m−3 [1000,2000] 1236.5822
Cs0,p mol m−3 [100,1000] 462.2640
Cs0,n mol m−3 [1000,4000] 2697.4117
Csmax,p mol m−3 − 22860
Csmax,n mol m−3 − 26390
Dynamic
Parameters
σp S m−1 [1,50] 2.2138
σn S m−1 [80,200] 113.2568
De m2s−1 [1e-11,2e-10] 7.6253e-11
Ds,p m2s−1 [1e-13,5e-12] 1.3233e-12
Ds,n m2s−1 [1e-14,5e-14] 3.6254e-14
kp m2.5mol−0.5s−1 [8e-12,4e-11] 1.8528e-11
kn m2.5mol−0.5s−1 [8e-12,4e-11] 2.2257e-11
t+ − [0.2,0.5] 0.3411

Although the proposed method shows good performance
under offline conditions, it owns a general drawback like
various methods for parameter estimation of the P2D model
[15], [16], [22], [27]. As the number of cycles increases,
the parameters obtained offline may not adapt to the true
physical parameters of the battery gradually. To tackle this
issue, here are some potential solutions: a) Utilize various op-
erating modes covering constant-current discharge, relaxation,
different driving cycles, and different ambient temperatures to
obtain a set of parameters offline. Then, the offline parameters
can be used for real-time estimation in the framework of
transfer optimization, which is a state-of-the-art approach
using prior knowledge for highly efficient optimization [45]. b)
Develop a computationally efficient reduced-order P2D model
and integrate it with the surrogate model to perform online
parameter estimation. Some further discussions can be found
in the Appendix.

VI. CONCLUSION

An SA-TLBO method is proposed for parameter identifica-
tion of the P2D model. The proposed method contains an opti-
mization framework integrating a TLBO and a Kriging model.
The gradient-free TLBO can generate promising solutions
from numerous candidate solutions based on heuristic rules
and avoid being trapped in local optima. The Kriging model
constructed using historical data can evaluate the candidate
parameters stored in the TLBO to filter out inferior solutions.
Since only a small number of promising solutions are required
to be evaluated by time-consuming simulations of the P2D
model, the computational efficiency is significantly improved.
Simulations and experiments show that the proposed method

Authorized licensed use limited to: Central South University. Downloaded on November 20,2020 at 08:20:40 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3038949, IEEE
Transactions on Industrial Informatics

9

is indeed effective and consumes much less computation
time than traditional heuristic algorithms. In our future work,
online parameter identification for a real-time system is under
consideration.

APPENDIX

Remark A-1. The P2D model introduced in this paper is
solved in COMSOL using the finite element method. Owing
to the high complexity and strong nonlinearity of the P2D
model, such a numerical simulation is very time-consuming.
A single P2D model simulation takes about 20 seconds on our
workstation. If the P2D model simulation must be performed
for each evaluation of a candidate solution, the computational
burden would be unaffordable.

In the proposed method, we used a data-based surrogate
model to gradually approach the objective function. In this
way, the surrogate model can be used to prescreen candidate
parameters and significantly reduce the number of the P2D
model simulations. The time required for a single computation
of the surrogate model in MATLAB is about 0.01 seconds.

It can be found that the computational burden of the
surrogate model can be almost ignored compared to the P2D
model. Since the number of the P2D model simulations is sig-
nificantly reduced, the computational efficiency of parameter
identification can be considerably improved, as shown in the
Table IV.

Remark A-2. Experiments have been performed on an
aged LiFePO4 battery that has been used for two years. As
shown in the following figure, the discharge trajectories of
this aged battery have changed significantly under operating
modes of 0.5C, 1C, and 2C. The proposed method is used
to identify the parameters of the P2D model based on the
current state of health of the battery. In this paper, since a
new battery is used to perform experiments, the identified
parameters cannot be adapted to an aged battery. Fortunately,
owing to the high computational efficiency of our method, we
can conveniently reuse it for parameter identification of an
aged battery according to its current state.
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Fig. 13. The results of experiments performed on an aged LiFePO4 battery.

Remark A-3. Like other optimization methods, EAs also
require an objective function, which is often called the fitness
function. Even if the closed-form expression of the fitness
function is unknown, it can be used to indicate how good
a candidate solution is. As shown in the following figure, the
error e between model output Û and reference voltage Uref

is considered as the objective function value in our method.

Note that the output of the P2D model can be obtained directly
from the model simulation performed in COMSOL. Thus,
the accurate mathematical relationship f(~θ) between candidate
parameters and model output is not required. It is the reason
that the proposed method can be used without the closed-form
expression of the objective function.

The P2D model 
solved in 
COMSOL

( )f 
Û

refU



 Û

e
refU

( )f  is unknown

Objective
function value

The approach to obtain objective function value 
in our proposed method

?
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of objective function is 
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Fig. 14. The approach to obtain objective function value in the proposed
method.
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