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Penalty function is well-known for constrained evolutionary optimization. An open ques-
tion in the penalty function is how to tune the penalty coefficient. This paper proposes
an adaptive fuzzy penalty method to address this issue, where the coefficient is adjusted
at both the individual level and the population level. At the individual level, each individual
chooses a penalty coefficient from a predefined domain according to some fuzzy rules. At
the population level, the domain of the crisp output is adjusted adaptively by using popu-
lation information. To enhance the population diversity, an effective mutation scheme is
developed. Due to its numerous merits, differential evolution is used to design a search
algorithm. By the above processes, a constrained optimization evolutionary algorithm
called AFPDE is proposed. Since the objective function value and the degree of constraint
violation are normalized, AFPDE is less problem-dependent than the seminal work of the
fuzzy penalty method. AFPDE introduces a lower penalty value in the early stage of
AFPDE while a higher one in the later stage. Thus, it can escape local optima in the infea-
sible region. Experiments on three well-known benchmark test sets and two mechanical
design problems validate that AFPDE is competitive.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Constrained optimization problems (COPs) exist widely in the real world [7]. A typical COP can be formulated as follows:
minimize f ð~xÞ; ~x ¼ ðx1; . . . ; xDÞ 2 S; Ld 6 xd 6 Ud

subject to : gjð~xÞ 6 0; j ¼ 1; . . . ;np

hjð~xÞ ¼ 0; j ¼ np þ 1; . . . ; nq;
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Nomenclature

Notations and abbreviations
AFPDE adaptive fuzzy penalty differential evolution
ATM adaptive tradeoff model
CEC congress on evolutionary computation
COEA constrained optimization evolutionary algorithm
COP constrained optimization problem
DE differential evolution
EA evolutionary algorithm
FES function evaluations
MaxFEs maximal function evaluations
Mean OFV average of the objective function values obtained over 25 independent runs
MF membership function
Std Dev standard deviation
~x decision vector/target vector/solution/individual
~xbest best solution in the current population
~x� true optimum
~xi ith target vector
~ui trial vector
~vr offspring in the mutation scheme
~o solution with the maximal degree of constraint violation
f ð~xÞ objective function
Fð~xÞ expanded objective function
F scaling factor
CR crossover control parameter
Gð~xÞ degree of constraint violation
gjð~xÞ jth inequality constraint
hjð~xÞ jth equality constraint
D dimensionality
np number of inequality constraints
nq number of constraints
S decision space
d tolerance value
rf penalty coefficient
f max maximal f ð~xÞ in the current population
f min minimal f ð~xÞ in the current population
f normð~xÞ normalized f ð~xÞ
Gmax maximal Gð~xÞ in the current population
Gmin minimal Gð~xÞ in the current population
Gnormð~xÞ normalized Gð~xÞ
pf reformulated penalty coefficient
pmax upper bound of the output domain of pf
Ri ith fuzzy rule
PS population size
~xr1,~xr2,~xr3 solution randomly selected from the population
jrand integer randomly selected from f1; . . . ;Dg
xd dth dimension of a solution
Ud upper bound of the dth dimension of a solution
Ld lower bound of the dth dimension of a solution
P population
t current generation number
T maximal generation number
e threshold in the e level controlling method
e0 initial value of e
p,g algorithm-specific parameter
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where ~x is a D-dimensional decision vector (i.e., solution or individual); each dimension xd; ðd ¼ 1; . . . ;DÞ is bounded
between Ld and Ud; S ¼ QD

d¼1½Ld;Ud� is the decision space; f ð~xÞ is the objective function; gjð~xÞ is the jth inequality con-
straint; hjð~xÞ is the ðj� npÞth equality constraint; np is the number of inequality constraints, and ðnq � npÞ is the number
of equality constraints. Note that the black-box objective function and constraints have no simple closed forms. Classical
approaches that need an analytical expression are not suitable to solve this kind of COP. Additionally, single-point-based
approaches are easy to be trapped in a local optimum. Nature-inspired algorithms are population-based and do not need
an analytical expression of a COP. Thus, we focus on using nature-inspired algorithms, especially evolutionary algorithms
(EAs), to solve COPs.

When tackling COPs, we must quantify the degree of constraint violation (i.e., Gð~xÞ). Conventionally, it is calculated as
follows [40]:
Gð~xÞ ¼
Xnq
j¼1

Gjð~xÞ; ð1Þ

Gjð~xÞ ¼
maxð0; gjð~xÞÞ; 1 6 j 6 np

maxð0; hjð~xÞ
�� ��� dÞ; np þ 1 6 j 6 nq

(
; ð2Þ
where d > 0 is a tolerance value. A solution which satisfies Gð~xÞ ¼ 0 is called a feasible solution. The feasible region
is composed of all feasible solutions. A constrained optimization algorithm is to seek the optimum in the feasible
region.

Due to their various merits, EAs [3] have been widely used for optimization. In addition, constrained optimization has
attracted much attention, and thus numerous kinds of constraint-handling techniques have been proposed [5,7,26,27,33].
In general, they can be classified into four categories:

� methods based on penalty function [22,34],
� methods based on separation of constraints and objective function [39],
� methods based on multiobjective optimization [6],
� hybrid methods [41,43].

A penalty function combines f ð~xÞ with Gð~xÞ by using a penalty coefficient. A method based on separation of con-
straints and objective function uses f ð~xÞ and Gð~xÞ alternatively. As its name infers, the third kind of method transforms
a COP into a multiobjective optimization problem. A hybrid method tries to leverage the distinct advantages of several
constraint-handling techniques. Traditionally, methods based on penalty function are frequently used because they are
intuitive and have a simple structure. An open question in these methods is how to set the penalty coefficient
properly.

According to the manner of setting the penalty coefficient, methods based on penalty function can be further divided into
three groups:

� methods based on static penalty [14],
� methods based on dynamic penalty [22],
� methods based on adaptive penalty [19].

In a method based on static penalty, the coefficient is kept unchanged throughout the optimization process. As we know,
different degrees of penalty would be needed for different problems or in different optimization stages. A constant value
would impair the performance of a method based on static penalty significantly. Thus, this kind of method may not be effec-
tive to complex COPs. In a method based on dynamic penalty, the coefficient is varied with generations according to a pre-
defined function. Although a dynamic method would be better than a static one in many cases, it seems not easy to define a
general function which would be problem-dependent. In a method based on adaptive penalty, the coefficient is tuned by
using population information. Since the information can reflect the evolution stage of the considered COP to some degree,
a method based on adaptive penalty would be more effective than the former two kinds of methods. Most state-of-the-
art methods based on penalty function fall into this category [4].

Among various methods based on adaptive penalty [19,34,48], the fuzzy penalty method is promising, since it can take
advantage of the fuzzy theory. The method in [45] is recognized as the first fuzzy penalty method, where the penalty
coefficient is decided by some fuzzy rules. In these rules, the original f ð~xÞ and Gð~xÞ are used as antecedent variables.
The performance of this method is problem-dependent, because the scales of f ð~xÞ and Gð~xÞ are often different. IF-THEN
rules are also used in [25], where a penalty value is calculated for each constraint. However, this method contains numer-
ous parameters which must be set empirically. In [20], a fuzzy membership function (MF) is utilized to define ‘‘the
solution with small Gð~xÞ”. However, advantages of the fuzzy theory are not used adequately in this method. A recent study
[34] incorporates the feasible proportion, that is, the percentage of feasible solutions in the population, into the IF-THEN
rules. To be specific, a low feasible proportion would lead to a high penalty value, while a high feasible proportion would
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cause a low penalty value. In the early stage,1 the feasible proportion would be very low. Thus, a high penalty value would
be assigned. However, as shown in [22,41], less information of constraints must be used in the early stage. A high penalty
value would trap the population into a local optimum in the infeasible region easily. If the constraints are complicated,
the situation would be even worse.

In summary, the fuzzy penalty method owns numerous advantages such as ease of implementation and good generality.
Moreover, it can take advantage of the fuzzy theory. In most fuzzy penalty methods, only the individual information is used
to tune the coefficient, while the population information is neglected to some extent. Thus, there is an urgent need for
designing a fuzzy penalty method where the penalty coefficient can be tuned at both the individual level and the population
level. Based on these observations, an adaptive fuzzy penalty method which consists of two levels is proposed. At the indi-
vidual level, the penalty coefficient of~x is decided by some fuzzy rules, where the normalized f ð~xÞ and normalized Gð~xÞ are
utilized as antecedent variables. At the population level, the domain of the crisp output is adjusted adaptively. By utilizing
both the individual information and the population information, the adaptive fuzzy penalty method can set a penalty coef-
ficient properly.

As we know, a constrained optimization evolutionary algorithm (COEA) includes two ingredients: a constraint-handling
technique and a search algorithm. In order to use the adaptive fuzzy penalty method to solve COPs, we must combine it with
a search algorithm. Due to its numerous advantages [9,28], differential evolution (DE) serves as the search algorithm. More-
over, population diversity is also critical to a COEA [41,44]. The ability of mutation schemes to introduce diversity is well-
recognized [11]. Thus, a simple yet effective mutation scheme is designed to further enhance the population diversity. By
using these ingredients, we propose an adaptive-fuzzy-penalty-based DE (AFPDE). The main contributions of this paper
are summarized as follows:

� An adaptive fuzzy penalty method is proposed to set a penalty coefficient properly.
� An effective search algorithm based on DE is proposed to generate solutions.
� A simple yet effective mutation scheme is proposed to enhance the population diversity.
� Since the objective function value and degree of constraint violation are normalized, AFPDE is less problem-dependent
than the seminal work [45] of the fuzzy penalty method. Compared with a recent study [34], AFPDE uses a lower penalty
value in the early stage while a higher one in the later stage. Thus, it can escape local optima in the infeasible region.

� Experiments on three well-known benchmark sets and two mechanical design problems demonstrate that AFPDE is
competitive.

The rest of this paper is organized as follows. Section 2 introduces some basic knowledge. AFPDE is presented in Section 3.
In Section 4, extensive experiments and discussions are conducted. Section 5 summarizes the conclusions and gives some
future directions.

2. Preliminary knowledge

2.1. Methods based on the penalty function

In a method based on penalty function, an expanded objective function Fð~xÞ used to compare solutions is formulated as
follows:
1 Not
there ar
to these
Fð~xÞ ¼ f ð~xÞ þ rf � Gð~xÞ: ð3Þ

where rf is a positive coefficient. It is worth noting that a more general Fð~xÞ is provided in [5] where two penalty coefficients
are used for inequality and equality constraints, respectively. In order to increase robustness, f ð~xÞ and Gð~xÞ are normalized:
f normð~xÞ ¼ f ð~xÞ � f min

f max � f min
; ð4Þ

Gnormð~xÞ ¼ Gð~xÞ � Gmin

Gmax � Gmin
; ð5Þ
where f max and f min are the maximal and minimal values of f ð~xÞ in the current population, respectively; Gmax and Gmin are the
maximal and minimal values of Gð~xÞ in the current population, respectively.

As shown in Fig. 1(a), a solution ~x can divide the space that uses f ð~xÞ and Gð~xÞ as two coordinates into four subspaces.
From the perspective of~x, Subspace I contains no promising information because solutions in this subspace are worse than
~x [39] in terms of both f and G. Inversely, Subspace III includes promising information of both constraints and objective func-
tion. Additionally, Subspace II has some promising information of constraints because solutions in this subspace own better
e that the early stage and the later stage are two frequently used terms in the community of evolutionary computation. To the best of our knowledge,
e no strict definitions of these two terms [8,34]. It is well-known that they are closely related to the number of generations. Thus, the parameters related
two stages are adjusted according to the number of generations.
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Fig. 1. Methodology of methods based on the penalty function.
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values of G than~x. On the contrary, Subspace IV contains some promising information of objective function. The key task of a
constraint-handling technique is to take advantage of the promising information in Subspaces II and IV.

As described in Fig. 1(b), in a method based on penalty function, solutions below the straight line F ¼ f þ rf � G which
passes through~x are better than~x. Thus, some promising information in Subspaces II and IV can be used. Moreover, a bigger
rf (i.e., rf ;U > rf ) can leverage more information of constraints while less information of objective function. Inversely, a smal-
ler rf (i.e., rf ;L < rf ) can use more information of objective function while less information of constraints. Many researchers [5]
have stated that the amount of information of constraints/objective function will decide the amount of exploration of infea-
sible regions. The exploration is important to approach a feasible optimum lying on the boundary of the feasible region or in
a decision space with disjoint feasible regions. Thus, how to set a proper rf is critical to a method based on penalty function.

2.2. Fuzzy logic theory

As shown in Fig. 2, a fuzzy logic system includes three steps:

1) Fuzzification: fuzzify crisp inputs by fuzzy MFs.
2) Fuzzy inference: infer fuzzified outputs by fuzzy rules. The Mamdani type inference engine [13,34] which uses the

max–min operator for calculation is adopted conventionally.
3) Defuzzification: defuzzify fuzzified outputs.

For example, a typical system with multiple inputs and a single output is explained. It includes k rules: Ri; ði ¼ 1; . . . ; kÞ.
The ith rule is described as follows:

Ri: IF q1 is Fi1 AND q2 is Fi2 AND � � � AND qn is Fin THEN y is Ci;

where qj ðj ¼ 1; . . . ;nÞ is the input; Fij is the label of qj; y is the output, and Ci is its label. Let lijðqjÞ be the MF of qj on Fij. Sim-
ilarly, liðyÞ is the MF of y on Ci. As a result, the firing strength of Ri (i.e., wi) is calculated as follows:
wi ¼ minj¼1;...;nflijðqjÞg: ð6Þ

Subsequently, the fuzzy implication is calculated as follows:
ai ¼ minfwi;liðyÞg: ð7Þ
Fig. 2. Configuration of the fuzzy logic system.
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Next, the fuzzy rules are aggregated as follows:
lðyÞ ¼ maxi¼1;...;kai: ð8Þ

Finally, the defuzzified output can be calculated by the centroid of area method:
ŷ ¼
Z
y
ylðyÞdy=

Z
y
lðyÞdy: ð9Þ
3. Proposed method–AFPDE

First, the framework of AFPDE is described in Section 3.1. Afterward, its main elements including the adaptive fuzzy pen-
alty method, the search algorithm, and the mutation scheme are explained in Sections 3.2, 3.3, and 3.4, respectively. Finally,
some critical issues are discussed in Section 3.5.

3.1. Framework

AFPDE maintains a population of PS individuals: P ¼ f~x1; . . . ;~xPSg. The population is updated according to the following
steps until the stopping criterion is satisfied.

Step 1): Initialization
Step 1.1) Initialize and calculate related parameters.
Step 1.2) Generate a population of PS individuals in the decision space uniformly.
Step 2): Population updating:
Step 2.1) Execute the search algorithm to generate offsprings.
Step 2.2) Execute the adaptive fuzzy penalty method to decide a penalty coefficient for each individual.
Step 2.3) Select individuals with good performance according to Fð~xÞ.
Step 2.4) Execute the mutation scheme to enhance the population diversity.
Step 3): Stopping criteria: If the stopping criterion is satisfied, then stop the procedure; otherwise, go to Step 2).

3.2. Adaptive fuzzy penalty method

It seems not easy to decide a general range of rf for all COPs. To address this issue, we set rf ¼ pf
1�pf

where 0 6 pf < 1. Thus,

Eq. (3) can be reformulated as:
Fð~xÞ ¼ ð1� pf Þ � f normð~xÞ þ pf � Gnormð~xÞ
1� pf

: ð10Þ
In this case, a lower value of pf corresponds to a lower penalty value, while a higher one results in a higher penalty value. It
would be easier to adjust pf than rf , since pf is within a certain range. Subsequently, an adaptive fuzzy penalty method
including an individual level and a population level is presented to tune pf .

3.2.1. Individual level
At the individual level, the Mamdani-type fuzzy logic is used to adjust the penalty coefficient for each individual. As

described in Section 2.2, a fuzzy logic system includes three steps: fuzzification, fuzzy inference, and defuzzification. Thus,
the individual level will be explained according to these three steps.
Fig. 3. The membership functions: (a) f normð~xÞ or Gnormð~xÞ, (b) pf .
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At the step of fuzzification, fuzzy MFs need to be defined for inputs: f normð~xÞ and Gnormð~xÞ. Similar to [34], a Gaussian-like
function is chosen:
lðtjc;rÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
r
e�

ðt�cÞ2
2r2 ; ð11Þ
where t is the input variable; c is the center; r is the standard deviation. As shown in Fig. 3(a), each input variable is decom-
posed into three fuzzy regions which are called labels (i.e., LOW ;MID, and HIGH). Note that MID stands for medium. The MFs
of these labels are defined by

� LOW : lLðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtj0;0:18Þp

,

� MID : lMðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtj0:5;0:18Þp

,

� HIGH : lHðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtj1;0:18Þp

.

A crisp input (i.e.,f normð~xÞ or Gnormð~xÞ) can be fuzzified into ðlLðf normð~xÞÞ;lMðf normð~xÞÞ;lHðf normð~xÞÞ or
ðlLðGnormð~xÞÞ;lMðGnormð~xÞÞ;lHðGnormð~xÞÞ.

At the step of fuzzy inference, the Mamdani-type inference engine is adopted, where some linguistic rules need to be
designed. The valuable knowledge summarized in the community of constrained evolutionary optimization is used to design
these rules. The goal of constrained optimization is to seek a feasible solution with an expected value of f ð~xÞ. To achieve this
goal, many researchers [26,34] have found that:

� the individual with a higher value of Gð~xÞ needs to be assigned a higher penalty value;
� the individual with a better value of f ð~xÞ needs to be given a lower penalty value.

Noticing that, the higher the penalty value is, the higher the value of pf is, and vice versa. Based on these discussions and
references [17,18], the linear fuzzy rules for tuning pf are designed in the following format and shown in Fig. 4:

Ri: IF f normð~xÞ is Fi1 AND Gnormð~xÞ is Fi2, THEN the penalty coefficient pf is Ci.

where Fi1 and Fi2 are the labels of f normð~xÞ and Gnormð~xÞ, respectively; Ci is the label of pf , which is also chosen from
fLOW;MID;HIGHg. The strength of these rules for pf (i.e., lðpf Þ) can be calculated according to Eqs. (6) and (8).

At the step of defuzzification, we first decide the domain of the crisp output pf . It is worth noting that pf is a value
between 0 and 1. Thus, the domain is set as ½0; pmax�, where pmax 2 ½0;1Þ. Note that pmax will be adjusted adaptively at the
population level. As shown in Fig. 3, the MFs used for defuzzification are defined as follows:

� LOW : lLðpf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðpf j0;0:18Þ

q
,

� MID : lMðpf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðpf j0:5;0:18Þ

q
,

� HIGH : lHðpf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðpf j1;0:18Þ

q
.

As a result, pf can be defuzzified according to Eq. (9) and these MFs. In summary, by these three steps, a value of pf can be
derived for~x.
Fig. 4. Linear fuzzy rules for tuning pf 2 ½0; pmax �.
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3.2.2. Population level
At the population level, population information is used to adjust pmax adaptively. To this end, some prior knowledge and

feedback information are taken into consideration. The former represents valuable findings summarized in this area and is
used to define a coarse-grained trend for pmax, while the latter is extracted from the evolving population and is used for the
fine-tuning of pmax.

Some well-known knowledge is used to define the coarse-grained trend function. Specifically, two critical findings [5] are
used: 1) A low penalty value is beneficial in the early stage; 2) A high penalty value is necessary in the later stage. As shown
in Section 3.2.1, a lower value of pmax will cause a lower penalty value. Thus, a low value of pmax is beneficial in the early stage,
while a high one is necessary in the later stage. In summary, the coarse-grained trend function of pmax is set as follows:
pmax ¼
t
T
; ð12Þ
where t and T are the current and maximal generation numbers, respectively. As described in Eq. (12), the value of pmax will
increase as the generation increases. Thus, a low value and a high value of pmax can be maintained in the early and the later
stages, respectively.

Of course, this trend function could not satisfy all COPs. Especially, for some COPs, this kind of penalty increases too slow.
In this case, a feasible solution could not be found because the penalty is not enough. In view of this, the coarse-grained pmax

needs to be fine-tuned by using the feedback information of the population. Herein, the minimal Gð~xÞ in the current popu-
lation (i.e., Gmin) is considered as the feedback information. Intuitively, if the penalty is not enough for a COP, Gmin would not
decrease continuously. In order to judge whether the penalty is sufficient, we set a threshold (i.e., e) for Gmin at each gener-
ation. If Gmin could not achieve e, the penalty would not be enough. In this case, pmax would be set to a value that is close to 1
to impose a high penalty. Based on [35], the e level controlling method is utilized to set the threshold:
e ¼ e0ð1� t
TÞ

cp
; if t

T 6 p

0; otherwise

(
: ð13Þ
By setting the truncation precision as e0ð1� pÞcp ¼ 10�k, we obtain:
cp ¼ � log e0 þ k
logð1� pÞ ; ð14Þ
where e0 is the initial threshold; p is the truncation parameter. Note that e0 is set according to the maximal Gð~xÞ in the initial
population. Both e0 and k are not very sensitive in the e level controlling method [35,41]. Additionally, we have done exten-
sive experiments to decide the value of p. As the same in [35], k is set to 5, and its effective range is investigated experimen-
tally. Therefore, the e level controlling method can be used easily in practice.

A simple example is given as follows for better understanding. In a typical run for g01 from the IEEE CEC2006 competition
[21], e0 is initialized as 1064.29. In the empirical study, p is set to 0.6. Thus, cp can be calculated according to Eq. (14):

cp ¼ 20:17. If t < 0:6T , the threshold ewould decrease according to e ¼ 1064:29ð1� t
TÞ

20:17; Otherwise, it would be truncated
to 0. In summary, e decreases as the generation increases. The population information can be used properly to tune pmax.

In summary, each solution can obtain a proper value of pf through the adaptive fuzzy penalty method. Details of this
method are summarized in Algorithm1.

Algorithm1: Adaptive fuzzy penalty method

1: Population level:
2: Calculate the threshold e according to Eq. (13) and Eq. (14).
3: Set pmax according to Eq. (12): pmax ¼ t

T.
4: Calculate the minimal degree of constraint violation Gmin in the population.
5: IF Gmin > e, THEN set pmax to a value that is close to 1.
6: Individual level:
7: Normalize f ð~xÞ and Gð~xÞ for each individual according to Eq. (4) and Eq. (5), respectively.
8: For each individual, fuzzified f normð~xÞ and Gnormð~xÞ according to the MFs defined in Fig. 3(a).
9: For each individual, infer the fuzzified outputs according to Eq. (6) and Eq. (8).
10: For each individual, calcualte pf according to Eq. (9) and the MFs defined in Fig. 3(b).
3.3. Search algorithm

The search algorithm, which is used to generate new solutions, is another important ingredient of a COEA. It is known that
exploration and exploitation [8] are two critical criteria used to design an effective search algorithm. Because of its simplicity
365
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and powerful search ability, DE [9,28] is adopted. Specifically, ‘‘DE/current-to-rand/1” is used for exploration, while ‘‘DE/r
and-to-best/1/bin” is utilized for exploitation:

DE/current-to-rand/1
~ui ¼~xi þ rand � ð~xr1 �~xiÞ þ F � ð~xr2 �~xr3Þ; ð15Þ

DE/rand-to-best/1/bin
~v i ¼~xr1 þ F � ð~xbest �~xr1Þ þ F � ð~xr2 �~xr3Þ; ð16Þ

ui;j ¼
v i;j; if randj < CRor j ¼ jrand
xi;j; otherwise

�
; ð17Þ
where~xi;~v i, and~ui are the target vector, mutant vector, and trial vector, respectively;~xr1;~xr2, and~xr3 are three mutually dif-
ferent solutions chosen from the population; F is the scaling factor;~xbest is the best solution in the current population; rand
and randj are two random values generated from the uniform distribution between 0 and 1; CR is the crossover control
parameter; jrand is a random integer chosen from f1; . . . ;Dg.

Algorithm2: Search algorithm

.

. .

.

As described in Eq. (15), ‘‘DE/current-to-rand/1” uses a differential vector ð~xr1 �~xiÞ to generate a mutant vector. This dif-
ferential vector will motivate~xi to approach~xr1 which is selected from the current population randomly. Thus, ‘‘DE/current-
to-rand/1” is able to promote the exploration by using the information of a random solution. As shown in Eq. (16), ‘‘DE/rand-
to-best/1/bin” uses a differential vector ð~xbest �~xr1Þ to generate a mutant vector. Since the information of the best solution
~xbest is used, ‘‘DE/rand-to-best/1/bin” can accelerate the convergence.

These two operators are combined in a compact manner. For each solution, if rand < gt=T
g , ‘‘DE/rand-to-best/1/bin” would

be executed; otherwise, ‘‘DE/current-to-rand/1” would be used. Note that g > 1 is a user-defined parameter and its sensitiv-

ity will be analyzed in Section 4.6. In the early stage, g
t=T

g is a small value. ‘‘DE/current-to-rand/1” will be utilized more fre-

quently than ‘‘DE/rand-to-best/1/bin”. Thus, the population diversity can be enhanced. In the later stage, g
t=T

g becomes big.

Inversely, ‘‘DE/rand-to-best/1/bin” will be used more frequently. Thus, the convergence can be accelerated. In this manner,
a tradeoff between exploration and exploitation can be achieved.

Note that~xbest is selected based on Fð~xÞ in Eq. (10). Inspired by our previous studies [41,44] which are effective to solve
COPs, we select F randomly from the pool of {0.6, 0.8, 1.0} and CR from the pool of {0.1, 0.2, 1.0}. Details of the search algo-
rithm are described in Algorithm2.

3.4. Mutation scheme

In practice, many COPs have complicated constraints. They would contain some local optima in the infeasible region,
where the population can be stuck easily. In fact, the population diversity is critical to escaping a local optimum. In order
to tackle complicated constraints, a mutation scheme is developed to increase the population diversity. In this scheme,
one dimension of a solution is regenerated randomly between its upper and lower bounds. In this manner, the new solution
would be located anywhere in the decision space. Thus, it could introduce some disturbances to the population. In order to
avoid too many disturbances, only one solution is mutated at each generation.
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In fact, the scheme is similar to a steady state genetic algorithm. First, a solution ~v r is randomly selected from the pop-
ulation. Subsequently, a random dimension d; ðd 2 f1; . . . ;DgÞ of ~v r is regenerated between the upper bound Ud and the
lower bound Ld:
v r;d ¼ Ld þ rand � ðUd � LdÞ: ð18Þ

Next, we compare ~v r with ~o which is the solution with the maximal Gð~xÞ. By comparing ~v r with ~o, the risk of eliminating a
solution with small Gð~xÞ will be reduced. To be specific, if f ð~v rÞ < f ð~oÞ or Gð~v rÞ < Gð~oÞ, we would replace~o with ~v r . Details of
the mutation scheme are summarized in Algorithm3.

Algorithm3: Mutation scheme

1: Randomly select a solution from the population and copy it to ~v r;
2: Randomly select a dimension from f1; . . . ;Dg and denote it as d;
3: Regenerate the dth dimension of ~vr according to Eq. (18);
4: Select the solution with the maximal Gð~xÞ from the population and denote it as ~o;
5: IF f ð~v rÞ < f ð~oÞ or Gð~vrÞ < Gð~oÞ, THEN replace ~o with ~v r
3.5. Discussions

� An adaptive fuzzy penalty method that introduces a penalty term into the objective function is presented. The same
approach has been used in our previous studies [40,41]. The main difference among these methods is how to tune the
penalty coefficient/weight value, which is critical to the tradeoff between constraints and objective function. We design
an adaptive fuzzy method to achieve this aim in AFPDE.

� The search algorithm also plays a key role in a COEA. Due to its simple structure and powerful search ability [9,28], DE has
been used to design search algorithms in most recent COEAs [23,29,34,41]. Moreover, constrained DE algorithms achieve
the first rank in the CEC2017 and CEC2018 competitions [30] for constrained optimization. It implies that DE may be more
appropriate for solving COPs than other nature-inspired algorithms. Thus, we take advantage of DE to design the search
algorithm.

� The computational time complexity of AFPDE is analyzed as follows. First, we analyze the computational time complexity
of the adaptive fuzzy penalty method which is mainly determined by the individual level. At this level, the Mamdani type
fuzzy inference system is used to decide a value of pf for each individual. According to [13,15,16,38], the computational

time complexity of the firing strength calculation is Oð2 � ln � nÞ, where n is the number of input variables in a fuzzy rule,
and l is the number of linguistic values. The computational time complexity of the fuzzy implication is Oð2 � ln � NkÞ, where
Nk denotes the number of discretized points of the output variable. The computational time complexity of the aggregation
is Oðln � NkÞ. We assume that addition, multiplication, and division all need only one operation. Thus, the computational
time complexity of the defuzzification is Oð3NkÞ. Since the above steps are executed in an additive manner, the compu-
tational time complexity of the adaptive fuzzy penalty method is Oðln � ð3Nk þ 2nÞÞ. The computational time complexity of
the search algorithm is the same as that of ‘‘DE/rand/1/bin” [10] (i.e., OðD � PSÞ). At each generation, the adaptive fuzzy
penalty method is executed PS times. Thus, its computational time complexity is OðPS � ðln � ð3Nk þ 2nÞÞÞ. In the mutation
scheme, only one dimension of one individual is regenerated. Its computational time complexity is Oð1Þ. The above steps
are executed in an additive manner and repeated for T generations. In summary, the computational time complexity of
AFPDE is OðT � PS � ðln � ð3Nk þ 2nÞ þ DÞÞ.

4. Empirical study

The empirical study contains three parts. The first part (i.e., Section 4.1) introduces the experimental settings. In the sec-
ond part (i.e., Section 4.2), AFPDE is compared with some state-of-the-art methods based on three benchmark test sets and
two mechanical design problems. The third part (i.e., Section 4.3) presents some further analyses.

4.1. Benchmark test functions and parameter settings

We first assessed the performance of AFPDE on three sets of benchmark test functions, which cover various challenging
properties. To be specific, they include 22, 36, and 56 test functions, which were used for the IEEE CEC2006 competition [21],
the IEEE CEC2010 competition [24], and the IEEE CEC2017 competition [46], respectively. These test functions have been
widely used for performance assessment in the community of constrained evolutionary optimization [34,37]. The common
parameters used in these three sets were given in [21,24]. As described in Table 1, the maximal function evaluations (i.e.,
MaxFEs) and the population sizes (i.e., PS) of each test set are different. The maiximal generation number can be approxi-

mated as T ¼ MaxFEs
PS

h i
where :½ � denotes the rounding function. According to the suggestions in [21,24,46], each algorithm
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Table 1
Maximal function evaluations MaxFEs and population size PS .

Test Functions MaxFEs PS

twenty-two test functions from the IEEE CEC2006 5.0E+05 80
eighteen 10D test functions from the IEEE CEC2010 2.0E+05 60
eighteen 30D test functions from the IEEE CEC2010 6.0E+05 80
twenty-eight 50D test functions from the IEEE CEC2017 1.0E+06 80
twenty-eight 100D test functions from the IEEE CEC2017 2.0E+06 100
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was run 25 times independently for each test function. The tolerance value d was set to the standard value suggested in [21]
(i.e., 10�4). In some studies [23], it was initialized to a big value and adjusted adaptively. Note that it converged to 10�4 even-

tually. The other parameters were set as follows: e0 ¼ minfGmax;10
D=2g; p ¼ 0:6, and g ¼ 4:5.

4.2. Performance comparison with other algorithms

4.2.1. Performance comparison on the 22 benchmark test functions from the IEEE CEC2006 competition
First, we evaluated the performance of AFPDE based on test functions used for the IEEE CEC2006 competition. Specifically,

we compared it with four recent COEAs: ITLBO [40], DW [29], fpenalty [34], and CACDE [47]. As discussed in Section 3.5, DE
reveals excellent performance in solving COPs. Among the four competitors, DW, fpenalty, and CACDE use DE as search algo-
rithms. Additionally, ITLBO is based on another kind of nature-inspired algorithm, which shows satisfactory performance in
solving COPs. The experimental results of AFPDE and the four competitors were reported in Table S1 in the supplementary
file, where ‘‘Mean OFV” and ‘‘Std Dev” denote the average and standard deviation of the objective function values obtained
over 25 independent runs, respectively. In [21], the condition f ð~xbestÞ � f ð~x�Þ < 10�4 was used to judge whether a COEA is able
to find the known optimum ~x�. For a test function, if a COEA can achieve this condition consistently over all 25 runs, we
would record a ‘‘*” in the table. As shown in Table S1, AFPDE and CACDE can find the optima of all test functions successfully.
Unfortunately, ITLBO, DW, and fpenalty cannot find the optima of six, one, and five test functions, respectively. We compared
AFPDE with other COEAs statistically using non-parametric Wilcoxon’s signed ranks test [2,12]. Specifically, the test was
used to compare each pair of COEAs over 22 test functions simultaneously. The results were summarized in Table 2. Partic-
ularly, Rþ denotes the sum of ranks for the functions in which the first COEA outperforms the second one, and R� the sum of
ranks for the opposite. As shown in Table 2, the Rþ values are bigger than the R� values in the first three cases. We also com-
pared all COEAs based on the Friedman’s test [12]. The results in Fig. 5(a) show that both AFPDE and CACDE achieve the first
rank. The above analysis shows that AFPDE can solve this set of benchmark test functions successfully. However, the com-
petitors can also solve most of the test functions, because these test functions are relatively easy and well-studied. To further
validate the effectiveness of AFPDE, two more complicated sets of benchmark test functions were adopted in the following
subsections.

4.2.2. Performance comparison on the 36 benchmark test functions from the IEEE CEC2010 competition
In this subsection, we used the second set of test functions to further compare AFPDE with the competitors. In fact, this

set includes eighteen 10-dimension (10D) test functions and eighteen 30-dimension (30D) ones. Since the true optima have
not provided in [24], we used ‘‘Mean OFV” for comparisons directly. To this end, we calculated the rank value of each COEA.
Specifically, we first ranked all COEAs on each test function based on ‘‘Mean OFV”. Subsequently, for each COEA, we calcu-
lated the total rank value by summing its rank values of all test functions. Intuitively, a COEA with a smaller rank value is
better than that with a bigger one. In addition, we implemented the Wilcoxon’s signed ranks test and the Friedman’s test to
test statistical significance.

For the 10D test functions, we summarized ‘‘Mean OFV”, ‘‘Std Dev”, and the rank values in Table S2. We also reported the
number of test functions on which a COEA achieves the best results. In the table, ‘‘D” represents that a COEA cannot get a
feasible solution. As shown in Table S2, AFPDE obtains the smallest rank value. Additionally, it achieves the best results
for 10 out of 18 test instances. It implies that AFPDE outperforms the other four peer COEAs. As shown in Table 3, the Rþ

values are bigger than the R� values in all cases. It means that AFPDE outperforms the other four competitors. Moreover,
the significant difference at a ¼ 0:05 can be observed in one case (i.e., AFPDE versus fpenalty). Results of the Friedman’s test
Table 2
Results of the Wilcoxon’s signed ranks test for AFPDE and the other four peer methods on twenty-two test functions from the IEEE CEC2006 competition.

Algorithm Rþ R� p-value a = 0.1 a = 0.05

ITLBO 144.5 86.5 P0.2 No No
DW 126.0 105.0 P0.2 No No
fpenalty 145.5 85.5 P0.2 No No
CACDE 126.5 126.5 P0.2 No No
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Fig. 5. Ranking of AFPDE and the competitors by the Friedman’s test on benchmark test functions: (a) IEEE CEC2006, (b) IEEE CEC2010 with 10D, (c) IEEE
CEC2010 with 30D, (d) IEEE CEC2017.

Table 4
Results of the Wilcoxon’s signed ranks test for AFPDE and the other four selected methods on eighteen 30D test functions from the IEEE CEC2010 competition.

Algorithm Rþ R� p-value a=0.1 a=0.05

ITLBO 155.5 15.5 1.1673E�03 Yes Yes
eDEag 147.0 6.0 2.1360E�04 Yes Yes
AIS-IRP 141.5 11.5 9.5370E�04 Yes Yes
CACDE 165.0 6.0 1.0682E�04 Yes Yes

Table 3
Results of the Wilcoxon’s signed ranks test for AFPDE and the other four selected methods on eighteen 10D test functions from the IEEE CEC2010 competition.

Algorithm Rþ R� p-value a = 0.1 a = 0.05

ITLBO 115.0 56.0 P0.2 No No
DW 100.5 52.5 P0.2 No No
fpenalty 157.0 14.0 8.392E-04 Yes Yes
CACDE 94.5 58.5 P0.2 No No
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in Fig. 5(b) show that AFPDE achieves the first rank. In summary, we can conclude that AFPDE has competitive performance
on the 10D test functions.

Results of the 30D test functions were reported in Table S3. Since DW and fpenalty do not provide the experimental
results of the 30D test functions, we replaced these two COEAs by eDEag [35] and AIS-IRP [49]. Note that eDEag is the winner
in the IEEE CEC2010 competition for single-objective constrained optimization. AIS-IRP is based on the artificial immune sys-
tem and obtains outperformed results on these functions. As shown in Table S3, the rank value of AFPDE is smaller than that
of the other four peer algorithms. AFPDE obtains the best results for 14 test instances. It implies that AFPDE outperforms the
other four algorithms. Similarly, results of the Wilcoxon’s signed ranks test in Table 4 reflect that AFPDE performs better
than the other four algorithms. The significant difference at a ¼ 0:05 can be observed in all cases. What’s more, as shown
in Fig. 5(c), AFPDE achieves the first rank in the Friedman’s test. These experimental results and discussions show that AFPDE
is able to solve the 30D test functions successfully.

4.2.3. Performance comparison on the 56 benchmark test functions from the IEEE CEC2017 competition
In order to further demonstrate the performance of AFPDE on high-dimensional test functions, we evaluated it based on

twenty-eight 50-dimension (50D) and twenty-eight 100-dimension (100D) test functions from the IEEE CEC2017 competi-
tion. Afterward, its results were compared with that of LSHADE442 [30] and UDE3 [36], which are the first two winners in the
IEEE CEC2017 competition for constrained optimization. To this end, we first ranked these three algorithms on each test func-
tion according to the procedure in [46]. A value would be considered as 0 if it is smaller than 10�9. Afterward, the total rank
value of each algorithm on all test functions was calculated. Experimental results were reported in Table S4 in the supplemen-
tary file. In Table S4, ‘‘voi” represents the average of the degree of constraint violation obtained over 25 runs. ‘‘FR” denotes the
percentage of runs where a feasible solution can be found. As shown in Table S4, AFPDE obtains the lowest rank on both the 50D
and the 100D test functions. Additionally, results of the Wilcoxon’s signed ranks test in Table 5 show that AFPDE performs bet-
ter than LSHADE44 and UDE. The significant difference at a ¼ 0:05 can be observed in both cases. Moreover, AFPDE ranks the
first in the Friedman’s test. The above analyses show that AFPDE is effective to solve high-dimensional test functions.

4.2.4. Performance comparison on two mechanical design problems
Many mechanical design problems have constraints and are formulated as COPs. In this section, AFPDE was applied to

solve two mechanical design problems. The step-cone pulley problem, which is described as Example 1.3 in [32], is to
2 LSHADE44 is a modification of the success-history-based parameter adaptation of differential evolution using linear population size reduction, where the
string ’44’ in the label of the algorithm indicates four competing DE strategies

3 UDE denotes the unified DE.
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Table 5
Results of the Wilcoxon’s signed ranks test for AFPDE and the other two selected methods on 56 test functions from the IEEE CEC2017 competition.

Algorithm Rþ R� p-value a = 0.1 a = 0.05

LSHADE44 976.5 619.5 4.45E�02 Yes Yes
UDE 1163.5 432.5 2.13E�02 Yes Yes
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minimize the weight of a four step-cone pulley. The explicit formulation and details of the problem are referred to [32]. We
applied AFPDE to solve this problem and compared its performance with that of three COEAs. Note that the MaxFEs (i.e.,
15000) were the same for all COEAs. Each algorithm was run 100 times independently. The best, mean, and worst objective
function values were summarized in Table 6. TLBO and ABC are two nature-inspired algorithms that have been used to solve
mechanical design problems successfully. FROFI is a state-of-the-art COEA based on DE which has revealed satisfactory per-
formance in engineering optimization. Among these four methods, AFPDE obtains the best performance. Thus, it can solve
this problem accurately and robustly.

The second problem is to optimize the parameters of a hydrodynamic thrust bearing with the aim of minimizing the
power loss. More details and the explicit formulation of this problem are referred to [31]. Similarly, we applied AFPDE to
solve this problem. The MaxFEs (i.e., 25000) were the same for all algorithms. Each algorithm was run 100 times indepen-
dently and the best, mean, and worst objective function values were summarized in Table 6. AFPDE outperforms the other
three algorithms consistently. It reflects that AFPDE is able to solve this problem accurately and robustly.

In summary, these experiments show that AFPDE can solve COPs with various characteristics including discontinuous and
tiny feasible regions. Since a single value (i.e., Gð~xÞ) is used to represent the constraint violation of all constraints as the same
in many other studies [34,43], AFPDE would be not proper to tackle COPs in which the constraints are of unequal importance.
Additionally, it outperforms some nature-inspired algorithms including ITLBO. ITLBO has shown better performance than
some nature-inspired algorithms which do not require hyperparameter tuning [40]. It implies that DE would be more proper
than some nature-inspired algorithms for constrained optimization. This is in line with the discussions in Section 3.5.

4.3. Further analysis

4.3.1. Effectiveness of the adaptive fuzzy penalty method
To validate the effectiveness of the adaptive fuzzy penalty method, we compared it with the penalty method in the adap-

tive tradeoff model (ATM) [43]. The penalty method in ATM can only be used when the population contains feasible solu-
tions. Thus, we implemented a variant called AFPDE-ATM by combining ATM with the adaptive fuzzy penalty method. If
the solutions are all infeasible, the adaptive fuzzy penalty method would be used; otherwise, the penalty method in ATM
would be adopted. To investigate the impact of the tolerance value d, AFPDE-ATM is enhanced by setting d adaptively.
The resultant variant is called AFPDE-AATM.

We first evaluated AFPDE, AFPDE-ATM, and AFPDE-AATM on C01–C18 with 30D. ‘‘Mean OFV” and ‘‘Std Dev” were
reported in Table S5 in the supplementary file. Afterward, we compared each of AFPDE-ATM and AFPDE-AATM with AFPDE
based on a pairwise statistical test, that is, the Wilcoxon’s rank sum test at a 0.05 significance level. In Table S5, ‘‘�”, ‘‘�”, and
‘‘+” represent that a variant performs worse than, similarly to, and better than AFPDE, respectively. AFPDE performs better
than AFPDE-ATM and AFPDE-AATM on eight and seven test functions, respectively. On the contrary, AFPDE-ATM and AFPDE-
AATM are better than AFPDE on zero and two test functions, respectively. In ATM, the degree of constraint violation is used to
reformulate the objective function and construct the final fitness function. In this case, too much emphasis would be put on
constraints. Thus, AFPDE-ATM performs worse than AFPDE on C05, C09, C10, and C15 which need much information of
objective function. Although the manner of setting d adaptively can introducing some information of objective function, it
would induce a negative impact. For example, AFPDE-AATM performs worse than AFPDE and AFPDE-ATM on C04 and
C11. The investigation of the impact is out of the scope of this paper and it would be focused on in the future. These discus-
sions show that the adaptive fuzzy penalty method is effective to handle constraints.

4.3.2. Effectiveness of the individual level and the population level
The adaptive fuzzy penalty method includes an individual level and a population level. In order to investigate the impact

of these two levels, we removed the individual level and the population level from AFPDE and obtained AFPDE-WoI and
Table 6
The comparison results of different methods on mechanical design problems.

Algorithm step-cone pulley hydrodynamic thrust bearing design

Best Mean Worst Best Mean Worst

TLBO [31] 16.634510 24.011358 74.022951 1625.443000 1797.707980 2096.801270
ABC [1] 16.634655 36.099500 145.470500 1625.442760 1861.554000 5144.836000
FROFI [44] 14.467584 14.467699 14.468038 1625.449568 1663.562923 1869.449075
AFPDE 14.467560 14.467560 14.467560 1625.442759 1652.258219 1847.083241
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AFPDE-WoP, respectively. Noticing that, in AFPDE-WoI, all solutions used pmax as the penalty coefficient. In AFPDE-WoP, pmax

was set to a constant value of 1. Next, we evaluated AFPDE, AFPDE-WoI, and AFPDE-WoP based on C01–C18 with 30D. The
results were reported in Table S6. If a method could not find a feasible solution over all runs, we would record the feasible
rate, that is, the percentage of feasible runs. In Table S6, AFPDE performs better than AFPDE-WoI on four test instances, while
it is worse than AFPDE-WoI on two test instances. Moreover, AFPDE-WoI fails to find a feasible solution of C17 over seven
runs. It indicates that the individual level is important to the adaptive fuzzy penalty method. Compared with AFPDE-WoP,
AFPDE obtains better results on twelve test functions. However, AFPDE-WoP fails to obtain a feasible solution of these twelve
test functions consistently. Moreover, AFPDE-WoP also performs worse than AFPDE on the rest test instances. It implies that
the population level is critical to the adaptive fuzzy penalty method. Additionally, it seems that the population level is more
important than the individual level. The reason may be that the general trend of the penalty coefficient is decided by the
population level.

4.3.3. Effectiveness of the mutation scheme
We developed a mutation scheme to enhance the population diversity which can help AFPDE escape a local optimum. In

order to investigate its effectiveness, we removed the mutation scheme from AFPDE and obtained a competitor called
AFPDE-WoM. Afterward, we evaluated AFPDE and AFPDE-WoM based on g01-g24 and C01-C18. Similarly, the test functions
on which AFPDE-WoM and AFPDE have significant performance difference were summarized in Table S7. As shown in
Table S7, AFPDE-WoM fails to obtain feasible solutions on seven test functions over all runs. Fortunately, with the aid of
the mutation scheme, AFPDE can find a feasible solution on these test instances. Thus, the mutation scheme is able to
enhance the population diversity of AFPDE.

4.3.4. Impact of the fuzzy inference engine and the fuzzifier
To investigate the impact of the fuzzy inference engine, we developed three variants (i.e., AFPDE-Luk, AFPDE-Zad, and

AFPDE-DR) where Lukasiewicz inference engine, Zadeh inference engine, and Dienes-Rescher inference engine were utilized,
respectively. Details of these three inference engines are referred to [42]. We evaluated these three variants and AFPDE by
using 18 test functions with 30D from the IEEE CEC2010 competition. The Wilcoxon’s rank sum test at a 0.05 significance
level was used to compare each of these three variants with AFPDE. The experimental resutls were reported in Table S8
in the supplementary file. In Table S8, ‘‘�”, ‘‘�”, and ‘‘+” represent that a variant performs worse than, similarly to, and better
than AFPDE, respectively. As shown in Table S8, AFPDE-Luk, AFPDE-Zad, and AFPDE-DR perform better than AFPDE on one,
two, and one test functions, respectively. Inversely, AFPDE is better than these three variants on zero, zero, and one test func-
tions, respectively. The results show that these three variants perform slightly better than or similarly to AFPDE. To inves-
tigate the impact of the Gaussian fuzzifier, we used it in AFPDE-Luk, AFPDE-Zad, AFPDE-DR, and AFPDE. As a result, we
obtained four variants called AFPDE-LukGau, AFPDE-ZadGau, AFPDE-DRGau, and AFPDE-Gau, respectively. We compared
each of them with AFPDE based on 18 test functions with 30D from the IEEE CEC2010 competition. The experimental results
were reported in Table S9 in the supplementary file. As shown in Table S9, AFPDE-LukGau, AFPDE-ZadGau, AFPDE-DRGau,
and AFPDE-Gau perform better than AFPDE on two, one, two, and one test functions, respectively. On the contrary, AFPDE
is better than these four variants on zero, zero, zero, and one test functions, respectively. In summary, these four variants
perform slightly better than or similarly to AFPDE.

These experimental results show that a more complex inference engine and the Gaussian fuzzifier could not improve the
performance of AFPDE significantly. The reasons may be twofold. On one hand, when the fuzzy logic is used to set a penalty
coefficient, the fuzzy rules may be more important than the inference engine and the fuzzifier. To the best of our knowledge,
most fuzzy penalty methods focus on designing effective fuzzy rules, and they adopt the Mamdani type fuzzy logic for infer-
ence [34,45] directly. On the other hand, the adaptive fuzzy penalty method includes an individual level and a population
level. Experimental results and discussions in Section 4.3.2 show that the population level is more important than the indi-
vidual level. Since the inference engine and the fuzzifier are used in the individual level, they would have less impact on the
performance of AFPDE than the population level.

4.3.5. Convergence analysis
The convergence graphs of AFPDE, ITLBO, and FROFI on C01-C18 with 30D were plotted in Figs. S1 and S2 in the supple-

mentary file. Since the source codes of the other COEAs cannot be obtained, their convergence graphs were not given. In
Figs. S1 and S2, f and FES denote the objective function value and function evaluations, respectively. We compared these
methods based on the FES used to locate the final solutions and the FES used to find a feasible solution. As shown in these
figures, AFPDE converges to its solutions faster than ITLBO and FROFI on most of the test functions. However, it costs more
FES to find a feasible solution than FROFI on most of the test functions. Because much information of objective function is
used in the early stage of AFPDE. It would have a negative impact on finding a feasible solution of a COP with easy con-
straints. In summary, although it would take more FES to find a feasible solution, AFPDE can converge to the final solution
by using fewer FES.

We also compared AFPDE, ITLBO, and FROFI in terms of running time. The experiments were performed on a computer
with Intel Core (TM) i5-7500 (3.40 GHz) processor and Windows 10 (64 bit) system. We recorded the running time of each
method in finding the first feasible solution. Since the optima of C01-C18 are not provided in [24], we recorded the running
time of finding a solution that can be obtained by all algorithms. The experimental results were reported in Tables S10 and
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S11 in the supplementary file. To compare these three methods, we first ranked them based on the running time for each test
function. Subsequently, for each algorithm, we calculated the total rank value by summing its rank values of all test func-
tions. These experimental results show that AFPDE runs slower than the other two algorithms in both cases. The reason
may be that much time is cost by fuzzification and defuzzification in AFPDE. In the future, more efforts will be devoted
to accelerating the speed of AFPDE.

4.3.6. Parameter sensitivity analysis
AFPDE involves two algorithm-specific parameters (i.e., p and g), which must be decided manually. In this subsection, we

used experiments to set these two parameters properly. Additionally, we also detected the effective range of k through
experiments.

In terms of p, we set it to five fixed values (i.e., p ¼ 0:2; p ¼ 0:4; p ¼ 0:6; p ¼ 0:8, and p ¼ 0:99). Note that p ¼ 0:6 was used
in AFPDE in default. We summarized ‘‘Mean OFV”, ‘‘Std Dev”, and the feasible rate of these five variants in Table S12. As
depicted in Table S12, AFPDE performs better than the variants with p ¼ 0:2; p ¼ 0:4; p ¼ 0:8, and p ¼ 0:99 on five, four,
two, and five test instances, respectively. It performs worse than these variants on zero, zero, two, and two test functions,
respectively. Moreover, the variants with p ¼ 0:2; p ¼ 0:8, and p ¼ 0:99 fail to obtain a feasible solution consistently on
one, two, and four test functions, respectively. In summary, it seems that 0.6 is a good choice for parameter p.

Similarly, to decide a proper value of g, we applied five fixed values (i.e., g ¼ 2:5;g ¼ 3:5;g ¼ 4:5;g ¼ 5:5, and g ¼ 6:5) in
AFPDE. In AFPDE, g ¼ 4:5 is adopted in default. We reported ‘‘Mean OFV”, ‘‘Std Dev”, and the feasible rate of these five vari-
ants in Table S13. AFPDE performs better than the variants with g ¼ 2:5;g ¼ 3:5;g ¼ 5:5, and g ¼ 6:5 on three, two, four, and
six test instances, respectively. Inversely, it performs worse than these variants on two, one, zero, and zero test instances,
respectively. Thus, g ¼ 4:5 is recommended to AFPDE.

In order to detect the effective range of k, we implemented seven variants of AFPDE where different values of kwere used
(i.e., k ¼ 1; k ¼ 3; k ¼ 5; k ¼ 7; k ¼ 9; k ¼ 11, and k ¼ 13). Note that k was set to 5 in default according to [35]. The experimen-
tal results of these seven variants were reported in Table S14. AFPDE performs better than the variants with
k ¼ 1; k ¼ 3; k ¼ 7; k ¼ 9; k ¼ 11, and k ¼ 13 on one, one, two, one, three, and seven test functions, respectively. However,
these variants cannot perform better than AFPDE on more than one test functions. As shown in Table S14, AFPDE with
k ¼ 1; k ¼ 3; k ¼ 5; k ¼ 7; k ¼ 9, and k ¼ 11 perform similarly on most of the test functions. Thus, a proper value of k can
be chosen from {1, 3, 5, 7, 9, 11}.
5. Conclusions

This paper proposes an adaptive fuzzy penalty method including two levels for constrained evolutionary optimization. At
the individual level, each individual chooses a penalty coefficient according to the designed fuzzy rules. At the population
level, the output domain of the penalty coefficient is adjusted by leveraging the population information. Additionally, a
mutation scheme is designed to further enhance the population diversity. Furthermore, a search algorithm is developed
to generate offsprings by taking advantage of DE. By the above processes, we propose a constrained DE called AFPDE. Sys-
tematic experiments on three benchmark test sets and two mechanical design problems indicate that:

� AFPDE exhibits better or at least competitive performance against other state-of-the-art COEAs;
� Both the individual level and the population level are significant to the adaptive fuzzy penalty method;
� The mutation scheme is able to enhance the population diversity which is important to tackle complex COPs.

In the future, we will extend AFPDE to settle COPs in which the constraints are of unequal importance.
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