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Spatial Decomposition-Based Fault Detection
Framework for Parabolic-Distributed

Parameter Processes
Yun Feng , Yaonan Wang , Bing-Chuan Wang , and Han-Xiong Li , Fellow, IEEE

Abstract—Fault detection for distributed parameter processes
(heat processes, fluid processes, etc.) is vital for safe and efficient
operation. On one hand, the existing data-driven methods neglect
the evolution dynamics of the processes and cannot guarantee
that they work for highly dynamic or transient processes; on
the other hand, model-based methods reported so far are mostly
based on the backstepping technique, which does not possess
enough redundancy for fault detection since only the boundary
measurement is considered. Motivated by these considerations,
we intend to investigate the robust fault detection problem for
distributed parameter processes in a model-based perspective
covering both boundary and in-domain measurement cases. A
real-time fault detection filter (FDF) is presented, which gets rid
of a large amount of data collection and offline training proce-
dures. Rigorous theoretic analysis is presented for guiding the
parameters selection and threshold computation. A time-varying
threshold is designed such that the false alarm in the transient
stage can be avoided. Successful application results on a hot strip
mill cooling system demonstrate the potential for real industrial
applications.

Index Terms—Distributed parameter process, fault detection,
partial differential equation (PDE) observer.

I. INTRODUCTION

D ISTRIBUTED parameter processes widely exist in
industrial applications, for example, transport-reaction

processes [1], snap curing processes [2]–[4], and battery
thermal processes [5]–[7]. Generally, these processes can
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all be described by partial differential equations (PDEs)
mathematically, which possess the spatial–temporal dynam-
ics [8]–[12]. With the rapidly increasing demand for the
high-production quality with economic operations for these
industrial processes, the requirement of system safety is a crit-
ical issue that needs to be addressed. Faults hidden in these
processes may cause system failure or even permanent damage
if they are not discovered in time. For example, the distributed
thermal fault in lithium-ion (Li-ion) batteries [5], [13] can lead
to battery degradation, failure, and even thermal runaway. The
in-domain actuator faults of diffusion-reaction processes [1],
[14] that widely exist in chemical processes can cause severe
effects. Despite the fact that advanced control design [15], [16]
for distributed parameter systems (DPSs) (including sampled-
data [17], [18] and fuzzy control [19]) were well studied in
recent years, works reported on fault diagnosis for distributed
parameter processes are relatively rare so far.

On one hand, for decades, the fault detection and fault-
tolerant control for technical processes that are modeled
by ordinary differential equations (ODEs) have been inves-
tigated sufficiently, from both model-based [20]–[22] and
data-driven [23] perspectives; on the other hand, research
focusing on the fault diagnosis of PDEs is relatively rare.
Similarly, these works can be roughly separated into these
two subcategories.

In terms of the data-driven fault detection for distributed
parameter processes, some works have been reported recently
(see [24]–[27] for reference). For example, by using the
Galerkin method, a data-driven process monitoring approach
for parabolic DPS was discussed [24]. A novel data-driven
method was proposed for fault detection and localization of
parabolic DPSs [25]. However, these methods either used
modal approximation [24] which induces observation spillover
or neglected the evolution dynamics of the processes [25], [27]
and cannot guarantee work for highly dynamic or transient
processes.

As for the existing model-based fault detection methods,
they can be further divided into two subcategories: 1) the
so-called “early-lumping” [28] approach that reduces the
PDE into several approximated ODEs in the first place
and then analyzes the ODE model (representative works
can be referred to [1], [14], and [29]). The other was the
so-called “late-lumping” approach [30], [31] which directly
investigates the PDE system without approximation. Research
belong to this category is mainly based on the backstepping
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design techniques [32] (see [13] and [33]). “Early-lumping”-
based approaches have been criticized for the observa-
tion spillover induced by the modal approximation used.
Moreover, for the backstepping-based fault detection meth-
ods, the redundancy cannot be guaranteed for certain appli-
cations since only boundary measurement is used. Hence,
a unified framework for fault detection, which can be
applied to either the boundary and in-domain sensor, is
still missing.

Considering the above facts, we are devoted to the study
of a methodology framework for robust fault detection of dis-
tributed parameter processes from a model-based perspective
while covering both boundary and in-domain measurement
cases. To be more specific, a fault detection filter (FDF) is
first constructed to generate signals by mimicking the FDF
design of lumped parameter systems (LPSs) [20]. Furthermore,
the residual evaluation scheme and threshold computation
procedure are conducted in a similar manner.

The remainder of this article can be summarized as follows.
In Section II, the detailed problem statement is introduced.
The methodology framework is illustrated in Section III. The
Luenberger-type PDE observer and FDF design are presented
in Sections IV and V, respectively. Illustrative demonstra-
tions on a hot strip mill cooling system are demonstrated in
Section VI. Finally, the concluding remarks are presented in
Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: R
n denotes n-dimensional Euclidean space, and

the norm is denoted as | · |2. L2([0, L]) � L2((0, L);R)

is a real Hilbert space of square integrable functions
ω(x) : [0, L] → R, and the spatial L2 norm is defined

by ||ω(·)||2 �
√∫ L

0 ω2(x)dx. Given a natural number l̄,

Hl̄(0, 1) � W l̄,2((0, 1);R) is a real Sobolev space of abso-
lutely continuous functions ω̄(x) : (0, 1) → R with square
integrable derivatives diω̄(x)/dxi up to the order l̄ ≥ 1 and

with the norm ||ω̄(·)||Hl̄ �
√∫ 1

0

∑l̄
i=0(

diω̄(x)
dxi )2dx. For any

functions ω(·) ∈ H1(0, 1), the spatial L∞ norm is defined as
||ω(·)||∞ � maxx∈[0,1] |ω(x)|. Tt � ∂T/∂t, Tx � ∂T/∂x, Txx �
∂2T/∂x2.

A. Process Description

We consider the distributed parameter processes that can be
described by the following PDE:

Tt(x, t) = Txx(x, t) + d(x, t) + f (x, t) (1a)

Tx(0, t) = η1T(0, t) (1b)

Tx(1, t) = −η2T(1, t) (1c)

T(x, 0) = T0(x) (1d)

y(t) =
∫ 1

0
c(x)T(x, t)dx (1e)

where T(·, t) ∈ L2([0, 1]) denotes the state variable, x ∈ [0, 1]
denotes the space variable and t ∈ [0,∞) is the time
variable, d(x, t) is the unknown disturbance (including pro-
cess noise and model uncertainty) in the system, f (x, t) is

the unknown fault, y(t) � [y1(t) y2(t) · · · yn(t)]T ∈
R

n denotes the n-dimensional sensor output, and c(x) �
[c1(x) c2(x) · · · cn(x)]T ∈ R

n characterizes the measure-
ment scheme. Without loss of generality, the most frequently
used pointwise measurement [34], [35] is selected with

ci(x) = δ(x − x̄i), i ∈ N � {1, 2, . . . , n}
corresponding to the pointwise measurement located on x̄i, i ∈
N in the spatial domain (0, 1) and δ(·) denotes the Dirac delta
function.

Assumption 1: The distributed disturbance d(x, t) satisfies
that

||d(·, t)||2 ≤ d̄ < ∞
where d̄ > 0 is a known constant.

Remark 1: It is worth noting that both fault f (x, t) and dis-
turbance d(x, t) exist in the system. It is a common setting in
the literature that the fault and disturbance exist in both ODE
systems [20] and PDE systems [13], [30], [36]. In fact, the
disturbance (unknown input) d(x, t) consists of model uncer-
tainty and process noises. As for the term f (x, t), it represents
all possible faults and will be 0 in the fault-free case. This set-
ting is essential for robust fault detection; otherwise, a false
alarm may arise.

B. Problem Statement

The problem considered can be formulated as follows:
Use pointwise measurement y(t) to design an FDF and

generate the corresponding residual signal for reliable fault
detection for distributed parameter processes that subject to
the state-space description of the form in (1a)–(1e).

III. METHODOLOGY FRAMEWORK

A. Motivation

The core of model-based fault diagnosis methods for ODE
systems lies in the construction of the analytical redun-
dancy [20], which can be used for the residual generation.
Bearing this in mind, we intend to construct an FDF in a
mimic way.

Note that for ODE systems, both the state variable and out-
put are of finite dimension. However, for systems described
by (1), the state variable T(x, t) is of infinite dimension while
the output y(t) is of finite dimension. One major challenge in
designing the FDF is how to map the finite-dimensional out-
put to the infinite-dimensional state variable to complete the
so-called output injection procedure.

Despite the fact that the backstepping-based boundary
observer design shows its superiority in simple design pro-
cedures (see [5], [13], [32], [33], and [37] for reference),
how to expand it to cover in-domain (pointwise and piece-
wise [34]) measurement requires more research efforts. This
becomes extremely essential for fault detection of distributed
parameter processes since in-domain measurement increases
the redundancy of the FDF.

To this end, we intend to investigate the FDF design
for distributed parameter processes covering both the bound-
ary measurement, pointwise measurement, and piecewise
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Fig. 1. Methodology framework.

measurement cases motivated by the unified Lyapunov-based
compensator design [38]. To facilitate the FDF design, some
results in [38] are further extended from the spatial L2 norm
to spatial L∞ norm.

B. Proposed Framework

Motivated by the above considerations, a framework that
consists of an FDF and the corresponding residual evaluation
and threshold computation procedures is introduced in Fig. 1
as follows.

IV. SPATIAL DOMAIN DECOMPOSITION-BASED PDE
OBSERVER DESIGN & ANALYSIS

Motivated by the spatial-domain decomposition technique
introduced in [34] and [38], the following PDE observer is
initiated for system (1a)–(1e):

T̂t(x, t) = T̂xx(x, t) + gT(x)L(y(t) − ŷ(t)) (2a)

T̂x(0, t) = η1T̂(0, t) (2b)

T̂x(1, t) = −η2T̂(1, t) (2c)

ŷ(t) =
∫ 1

0
c(x)T̂(x, t)dx (2d)

where g(x) � [g1(x) g2(x) · · · gn(x)]T and the elements
are defined as

gi(x) �
{

1, x ∈ [
xi, xi+1

]
0, x /∈ [

xi, xi+1
] i ∈ N (3)

such that x̄i ∈ (xi, xi+1), i ∈ N , 0 = x1 < x2 < · · · <

xn < xn+1 = 1, and L � diag{l1, l2, . . . , ln} is the gain matrix
for the observer. This is the main idea of the spatial-domain
decomposition approach [34], [39], as illustrated in Fig. 2.

Introducing the state error variable e(x, t) � T(x, t)−T̂(x, t),
and the output error variable ỹ(t) � y(t) − ŷ(t), the following
error system is obtained:

et(x, t) = exx(x, t) + f (x, t) + d(x, t)

− gT(x)L
∫ 1

0
c(x)e(x, t)dx (4a)

ex(0, t) = η1e(0, t) (4b)

ex(1, t) = −η2e(1, t) (4c)

by combining (1) with (2).

Fig. 2. Illustration of the spatial decomposition approach with pointwise
measurement.

Lemma 1 [38]: Given a scalar function z ∈ H1(0, 1), the
following inequality holds:

∫ 1

0
(z(y) − z(x̄))2ds ≤ 4φπ−2

∫ 1

0
(dz(y)/dy)2dy

where x̄ ∈ [0, 1], φ � max{x̄2, (1 − x̄)2}.
Lemma 2 [40]: Given regular real functions V(t) and h(t)

V̇(t) ≤ −βV(t) + h(t) ∀t ≥ 0

implies that

V(t) ≤ e−αtV(0) +
∫ t

0
e−β(t−υ)h(υ)dυ ∀t ≥ 0

for any finite positive constant α.
Lemma 3 (Agmon’s Inequality [32]): Given a scalar func-

tion z ∈ H1(0, 1), the following inequalities hold:

||z(·, t)||2∞ ≤ z2(0, t) + 2||z(·, t)||2||zy(·, t)||2,
||z(·, t)||2∞ ≤ z2(1, t) + 2||z(·, t)||2||zy(·, t)||2.

Theorem 1 (Fault Detectability): For positive constant γ ,
if there exist positive scalars p, q ∈ (0, (8/π2)) and l̄i, i ∈ N
such that the following LMIs can be satisfied:

� i + pη1q

2
I ≤ 0, i ∈ N (5)

where

� i �

⎡
⎢⎢⎢⎢⎣

− pπ2

4φi
� � �(

pπ2

4φi
− l̄i

2

)
− pπ2

4φi
� �

0 l̄i
2 −p �

p
2 0 − p

2 −γ 2

⎤
⎥⎥⎥⎥⎦

, i ∈ N

and φi � max{(x̄i −xi)
2, (xi+1 − x̄i)

2}, then e(x, t) is uniformly
ultimately bounded (UUB) in the sense of ||·||∞ with ultimate
bound ē where

ē �
√

2

p min{η1, 1}ρ̄ γ d̄ (6)

with

ρ̄ � min
{
η1q, 2 − qπ2

4

}
. (7)

The elements li of the observer gain matrix can be calculated
according to

li = p−1 l̄i, i ∈ N . (8)
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Proof: Consider the following Lyapunov function:

V(t) � V1(t) + V2(t) (9)

where

V1(t) �
p

2

∫ 1

0

(
e2(x, t) + e2

x(x, t)
)

dx

V2(t) �
pη1

2
e2(0, t) + pη2

2
e2(1, t). (10)

The time derivative of V1(t) can be calculated as

V̇1(t) =
∫ 1

0
pe(x, t)et(x, t)dx

+
∫ 1

0
pex(x, t)ext(x, t)dx. (11)

Set

l̄i = pli, i ∈ N .

Using integration by parts, one gets
∫ 1

0
pe(x, t)et(x, t)dx =

∫ 1

0
pe(x, t)exx(x, t)dx

︸ ︷︷ ︸
Intergration by parts+(4b)−(4c)

−
∫ 1

0
pe(x, t)gT(x)Ldx

∫ 1

0
c(x)e(x, t)dx

+
∫ 1

0
pe(x, t)d(x, t)dx

= −pη2e2(1, t) − pη1e2(0, t)

−
∫ 1

0
pe2

x(x, t)dx

−
n∑

i=1

∫ xi+1

xi

l̄ie(x, t)e(x̄i, t)dx

+
∫ 1

0
pe(x, t)d(x, t)dx (12)

by combining with (4a) and the boundary conditions in (4b)
and (4c).

Moreover, the last term in the RHS of (11) is further
formulated as

∫ 1

0
pex(x, t)ext(x, t)dx

︸ ︷︷ ︸
Intergration by parts+(4b)−(4c)

= −pη2e(1, t)et(1, t) − pη1e(0, t)et(0, t)

−
∫ 1

0
pexx(x, t)et(x, t)dx

= −pη2e(1, t)et(1, t) − pη1e(0, t)et(0, t)

−
∫ 1

0
pe2

xx(x, t)dx +
n∑

i=1

∫ xi+1

xi

l̄iexx(x, t)e(x̄i, t)dx

−
∫ 1

0
pexx(x, t)d(x, t)dx (13)

considering (4a) and the boundary conditions in (4b) and (4c).

Combining (12) with (13), it can be obtained that

V̇1(t) = −pη2e2(1, t) − pη1e2(0, t) − pη2e(1, t)et(1, t)

− pη1e(0, t)et(0, t) −
∫ 1

0
pe2

x(x, t)dx

−
∫ 1

0
pe2

xx(x, t)dx −
n∑

i=1

∫ xi+1

xi

l̄ie(x, t)e(x̄i, t)dx

+
n∑

i=1

∫ xi+1

xi

l̄iexx(x, t)e(x̄i, t)dx

+
∫ 1

0
pe(x, t)d(x, t)dx −

∫ 1

0
pexx(x, t)d(x, t)dx.

(14)

Moreover, it can be calculated that

V̇2(t) = pη1e(0, t)et(0, t) + pη2e(1, t)et(1, t). (15)

Combining (14) and (15), it can be derived that

V̇(t) = −pη2e2(1, t) − pη1e2(0, t) −
∫ 1

0
pe2

x(x, t)dx

−
∫ 1

0
pe2

xx(x, t)dx −
n∑

i=1

∫ xi+1

xi

l̄ie(x, t)e(x̄i, t)dx

+
n∑

i=1

∫ xi+1

xi

l̄iexx(x, t)e(x̄i, t)dx

+
∫ 1

0
pe(x, t)d(x, t)dx −

∫ 1

0
pexx(x, t)d(x, t)dx.

(16)

Using Lemma 1 for each interval [xi, xi+1], i ∈ N , it can
be derived that

∫ xi+1

xi

e2
x(x, t)dx ≥ π2

4φi

∫ xi+1

xi

(e(x, t) − e(x̄i, t))2dx. (17)

Substituting (17) into (16) and recalling that 0 = x1 < x2 <

· · · < xn < xn+1 = 1 and η1 > 0, η2 > 0, we have that

V̇(t) ≤ −pη2e2(1, t) − pη1e2(0, t) −
n∑

i=1

∫ xi+1

xi

pπ2

4φi
e2(x, t)dx

−
n∑

i=1

∫ xi+1

xi

pπ2

4φi
e2(x̄i, t)dx −

n∑
i=1

∫ xi+1

xi

pe2
xx(x, t)dx

+
n∑

i=1

∫ xi+1

xi

(
pπ2

2φi
− l̄i

)
e(x, t)e(x̄i, t)dx

+
n∑

i=1

∫ xi+1

xi

l̄iexx(x, t)e(x̄i, t)dx

+
n∑

i=1

∫ xi+1

xi

pe(x, t)d(x, t)dx

−
n∑

i=1

∫ xi+1

xi

pexx(x, t)d(x, t)dx

=
n∑

i=1

∫ xi+1

xi

ξT
i (x, t)� iξ i(x, t)dx − pη2e2(1, t)

− pη1e2(0, t) + γ 2||d(·, t)||22 (18)
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where

ξ i(x, t) � [e(x, t) e(x̄i, t) exx(x, t) d(x, t)]T .

By substituting (5) into (18) and considering Assumption 1,
it can be obtained that

V̇(t) ≤ −pη1q

2

n∑
i=1

∫ xi+1

xi

ξT
i (x, t)� iξ i(x, t)dx

− pη2e2(1, t) − pη1e2(0, t) + γ 2d̄2

≤ −pη1q

2

(
||e(·, t)||22 + ||exx(·, t)||22

)
− pη2e2(1, t)

− pη1e2(0, t) + γ 2d̄2

≤ −
(

η1q
p

2
||e(·, t)||22 + π2η1q

4

p

2
||ex(·, t)||22

+ 2
pη2

2
e2(1, t) +

(
2 − qπ2

4

)
pη1

2
e2(0, t)

)
+ γ 2d̄2

≤ −ρ̄V(t) + γ 2d̄2 (19)

by applying Lemma 1 and recalling the definition of ρ̄ in (7).
Hence, one gets

V(t) ≤ V(0) exp(−ρ̄t) + γ 2d̄2

ρ̄
(20)

by Lemma 2.
Recalling Lemma 3 and Young’s inequality [32], we get

||e(·, t)||2∞ ≤ e2(0, t) + 2||e(·, t)||2||ex(·, t)||2
≤ e2(0, t) + ||e(·, t)||22 + ||ex(·, t)||22
≤ e2

B(t) � 2V(0)

p min{η1, 1} exp(−ρ̄t) + ē2 (21)

using (20).
Recalling Assumption 1, one gets that 0 < ē < ∞. Hence,

e(x, t) satisfies the UUB condition in the sense of || · ||∞ while
the ultimate bound is ē.

Remark 2: Note that when using the Poincaré–Wirtinger
inequality’s variants and Agmon’s inequality for deriving (19)
and (21), respectively, e(0, t) is considered in both inequal-
ities. One can consider replacing it with e(1, t) instead, and
LMIs in (5) change to

� i + pη2q

2
I ≤ 0, i ∈ N

corresponding under this condition. Moreover, one can get an
ultimate bound following the same procedures. The details are
not discussed due to triviality.

Remark 3: The proposed spatial domain decomposition
approach contains the boundary measurement at x = 0 or
x = 1 if x̄1 = 0 for x̄n+1 = 1. Moreover, the results
can be easily expanded to the piecewise measurement case,
as shown in [38]. Furthermore, the results are also appli-
cable for the homogeneous Dirichlet boundary conditions,
homogeneous Neumann boundary conditions, mixed homo-
geneous Neumann–Dirichlet boundary conditions, and mixed
homogeneous Dirichlet-Neumann boundary conditions. These
extensions are trivial exercises and are not discussed.

V. FDF DESIGN & ANALYSIS

For the fault detection purpose, the following residual signal
r(t) is selected intuitively:

r(t) = ỹ(t). (22)

Then, we show the lumped evaluation scheme and the
threshold as follows:

J(t) =
∫ t+�

t
|r(τ )|22dτ (23a)

Jth(t) = sup
f (x,t)=0

J(t) (23b)

where � > 0 is the length of the evaluation time window.
Remark 4: There are several residual evaluation functions

that are widely used in fault detection, such as the peak value,
the average value, the root-mean-square (RMS) value, and the
L2 norm [20]. The RMS value and L2 norm are related and
are designed to reduce the false alarm rate (FAR) at the cost of
fault detectability. It is worth noticing that (

∫ t+T
t |r(τ )|2dτ)1/2

is a general form of the L2 norm [20], [41] of the signal r(t),
which measures the energy of a signal over a time interval
[t, t+T]. Since evaluation over the whole time domain is usu-
ally unrealistic, introducing an evaluation window is a practical
modification [20]. This kind of evaluation function was widely
used in the literature discussing FD issues of dynamic systems
(see [42] and [43]).

Hence the following decision logic will guarantee reliable
detection performance:

{
J(t) > Jth(t) =⇒ faulty at time t
Otherwise =⇒ fault-free at time t.

(24)

Theorem 2: (Fault Detection Threshold Calculation) Under
the lumped residual evaluation function in (23), if the condi-
tions in Theorem 1 are satisfied, the time-varying detection
threshold Jth(t) for fault detection can be computed as

Jth(t) =
∫ t+�

t
ne2

B(τ )dτ. (25)

Proof: The proof is based on (21) and the property of ||·||∞.
It is omitted due to triviality.

Remark 5: It is worth noting that the threshold Jth(t) is
designed to be time varying rather than a constant that is
frequently used [29], [33]. The intuitive idea is that the ini-
tial error e0(x) contributes to V(0) and the time-varying term
in (25) is decreasing exponentially with time, if only the
ultimate bound ē is considered in the threshold setting, one
inevitable outcome is the false alarm in the initial transi-
tion stage [29]. To decrease the FAR, we add the compensate
time-varying term in the threshold.

VI. ILLUSTRATIVE EXAMPLE

A. System Description

Consider the following thermal model of a hot strip
mill [24], [44]–[46] under the fault-free and disturbance-free
conditions:

ρcT̄τ (ξ, τ ) = kT̄ξξ (ξ, τ ) (26a)
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Fig. 3. Hot strip mill cooling system.

TABLE I
PROCESS PARAMETER SETTING

T̄ξ (0, τ ) = h

k

(
T̄(0, τ ) − Tw

)
(26b)

T̄ξ (L, τ ) = −h

k

(
T̄(L, τ ) − Tw

)
(26c)

T̄(ξ, 0) = T̄0(ξ) (26d)

where T̄(ξ, τ ) ∈ L2([0, L]) denotes the temperature distribu-
tion along the thickness direction and L is the thickness of the
strip, ξ ∈ [0, L] is the space variable, τ ∈ [0,∞) denotes the
time, ρ is the density, k denotes the average value of thermal
conductivity while c is the average value of specific heat, h
denotes the heat transfer coefficient, and Tw denotes the tem-
perature of water. Fig. 3 presents the layout of a strip on the
ROT.

To facilitate the analysis, considering the disturbance and
fault existing in the process and applying the scaling transfor-
mation [32], [44]

x = ξ

L

t = kτ

ρcL2

T = T̄ − Tw

T̄0 − Tw

to system (26) leads to the following normalized equation:

Tt(x, t) = Txx(x, t) + d(x, t) + f (x, t)

Tx(0, t) = ηT(0, t)

Tx(1, t) = −ηT(1, t)

T(x, 0) = T0(x) = 1

y(t) = T(0, t)

Fig. 4. Temperature distribution profile T̄(ξ, τ ) under normal operating
condition.

Fig. 5. Simulation results with abrupt fault. (a) Trajectory of ||e(·, t)||∞ and
eB(t). (b) Trajectory of J(t) and Jth(t).

where η � hL
k > 0. For practical consideration, the boundary

measurement T(0, t) on the bottom of the strip is used for
fault detection.

B. Parameter Setting

Typically, the strip’s temperature decreases from nearly
900 ◦C to 650 ◦C [44]; hence, the initial condition in (26d) is
selected as T̄0(ξ) = 900 without loss of generality. Moreover,
as illustrated in [44] and [47], the parameters used in the
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Fig. 6. Simulation results with periodic fault. (a) Trajectory of ||e(·, t)||∞
and eB(t). (b) Trajectory of J(t) and Jth(t).

simulation along with their practical values are summarized
in Table I.

C. Simulation Results

The simulation result of system (26) under normal operating
condition is presented in Fig. 4. The following disturbance is
considered:

d(x, t) = 0.05 exp
(
−0.5(x − 0.5)2

)
sin(t).

Furthermore, the following fault is injected:

f (x, t) = bf (x)f (t)

where

bf (x) = H(x − 0.5) − H(x − 0.75)

is the shape function of the fault with H(·) denoting the stan-
dard Heaviside function. Two kinds of faults are considered

Abrupt fault:f (t) =
{

0, t ∈ [0, 60)

1, t ∈ [60,∞)

Periodic fault:f (t) =
{

0, t ∈ [0, 60)

1 + sin(5t), t ∈ [60,∞).

Selecting the evaluation time window � = 0.1, the sim-
ulation results of both abnormal fault and periodic fault are
presented in Figs. 5 and 6, respectively. One can find that the
fault detection time t = 60 can be well detected for both faults.

Moreover, results in Figs. 5(a) and 6(a) show that ||e(·, t)||∞
is UUB in the fault-free scenario, which demonstrated the
correctness of Theorem 1.

VII. CONCLUSION

In this article, a unified framework for fault detection con-
sisting of both the boundary and in-domain sensors was
proposed without modal approximation or interpolation. An
FDF based on the PDE observer was developed, which is moti-
vated by the FDF design for LPSs. Rigorous theoretic analysis
was presented to guarantee the reliability of the proposed
detection scheme. Motivated by the fact that for real industrial
processes, the system model may not be completely known,
hence it would be interesting to further investigate the fault
detection problem of these processes with partially known or
even unknown system parameters in the future.
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