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Spatiotemporal Modeling for Distributed
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Abstract—Time/space separation based spatiotemporal
modeling methods have been proven to be effective and
efficient for modeling a class of distributed parameter sys-
tems (DPSs). However, these conventional methods may not
work satisfactorily for DPSs with time-dependent boundary
conditions. A sliding window based dynamic spatiotempo-
ral modeling method is proposed for this kind of DPSs.
First, the sliding window is appropriately designed to cap-
ture the most recent spatiotemporal data. Then, the conven-
tional Karhunen–Loève method can be used to construct
the analytical model. Besides, a more general sliding win-
dow method can be achieved by using a forgetting factor to
adjust different influence of the current and previous data.
This analytical model can be utilized for online performance
prediction. Simulation experiments on a benchmark and a
battery with unknown boundary cooling have demonstrated
the superior performance of the proposed method on the
DPSs with time-dependent boundary conditions.

Index Terms—Distributed parameter systems (DPSs), for-
getting factor, Karhunen–Loève (KL), sliding window, time-
dependent boundary conditions.

I. INTRODUCTION

A PLENTY of physical and industrial processes, such as
chemical reaction process [1], fluid flow [2], and thermal

process [3] are distributed parameter systems (DPSs), which are
governed by partial differential equations (PDEs) and exhibit
spatiotemporal dynamics. Modeling DPSs is significant and
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essential for simulation, controlling, and optimization. How-
ever, it would be challenging to model the complicated spa-
tiotemporal dynamic process due to the infinite-dimensional
nature.

Time/space separation based modeling methods [4] have been
proven to be effective and efficient to model DPSs with numer-
ous results reported in the literature. When the DPS is known,
a spectral method can be utilized to reduce it into a number of
ordinary differential equations (ODEs). The spectral method is
successfully integrated with neural network for modeling the
complex curing process [3], where the spectral method is for
time/space separation and the neural network for estimation
of temporal nonlinearities. Different types of spatial activation
functions are utilized for model reduction and extreme learning
machine (ELM) [5] is for online estimating nonlinear ODEs [6].
When the DPS is unknown, the data-based time/space separa-
tion, such as the Karhunen–Loève (KL) method, is used to ex-
tract information from experimental data. Similar to the neural
spectral method, KL can be integrated with the neural network to
model nonlinear DPSs [7] with computational intelligence uti-
lized to optimize the neural network. The famous ELM can also
be combined with KL method for spatiotemporal modeling [8].
For the very complex DPSs, a different model configuration
could be designed to match the dynamic complexity better. The
spatial kernels using Volterra series [9], [10] and Hammerstein
series [11] are designed to capture very complex spatiotemporal
dynamics. For coupled nonlinear dynamics, the dual extended
Kalman filter method is designed to model the internal states
of the battery system [12]. When there are strong stochastic
uncertainties, the least-squares support vector machine (LS-
SVM) [13] and Gaussian process [14] could be utilized for
temporal modeling. Also, there is a nonlinear time/space separa-
tion modeling method using locally linear embedding idea [15]
to model the thermal process of lithium-ion batteries [16], and
a dual LS-SVM is designed for the coupled dynamics of the
curing process [17].

From the literature review, it can be found that most of
the time/space separation based methods work for DPSs with
time-invariant boundary conditions. However, DPSs with time-
dependent boundary conditions, which exists widely in the
industrial processes, are scarcely taken into account. When
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modeling a DPS online, conventional time/space separation
based methods would take all collected data equally to construct
an analytic model. This manner is effective to DPSs with time-
invariant boundary conditions due to the fact that all data are
generated from the same PDE with the same boundary condi-
tions. However, it would lose its effectiveness on DPSs with
time-dependent boundary conditions. Because previous data
cannot reflect the properties of the DPS with current bound-
ary conditions. Given this, it is necessary to attempt to tailor
time/space separation based method properly to model DPSs
with time-dependent boundary conditions. Wang and Li [18]
incorporate the variations of time-dependent boundary condi-
tions into the reduced model. Without modifying the dominant
spatial basis functions (SBFs), the performance of this method
may be limited to a great extent. Armaou and Christofides [19]
transform the time-dependent system into a time-invariant one
by using an analytical expression that describes how the spatial
domain changes. However, this information is not available in
many real-world applications. Narasingam et al. [20] propose a
temporal-clustering based method to address this issue, where
the snapshots are classified into several clusters, and an analyt-
ical model is constructed for each cluster. Since the clustering
process involves an optimization problem, its efficiency will
be limited to some extent. To address the challenge introduced
by the time-dependent boundary conditions, Izadi and Dublje-
vic [21] design a mapping function that maps the time-dependent
domain to a fixed referenced one. To construct the mapping
function, the time-dependent boundary conditions usually need
to be known. Though a grid-point based method is introduced
to calculate the mapping function numerically, meshing itself
would be time-consuming. Recently, Sidhu et al. [22] com-
bine the sparse proper orthogonal decomposition and Galerkin
method to model a hydraulic fracturing process. Since Galerkin
method is utilized, information of some parameters of the pro-
cess must be known. As can be seen, most methods for DPSs
with time-dependent boundary conditions require some param-
eters or analytical expression of the considered system to be
known, which may not be available in most practical cases.
Besides, some clustering and mapping methods would be time-
consuming. Hence, designing a simple yet effective data-driven
method is promising.

In recent years, the successful utilization of the sliding win-
dow method has been seen in various scientific fields, such as
activity recognition [23], channel identification [24], and protein
annotations extraction [25]. As a data-driven method, the slid-
ing window method is easy to implement and efficient. Besides,
by a sliding window, the time-varying properties can be elabo-
rately caught. Although it has numerous advantages, the sliding
window method has not been utilized for modeling of DPSs
(to the best of our knowledge). By a sliding window, the most
recent data, which truly reflects the real-time intrinsic nature
of a process, will be utilized for modeling. Thus, it would be a
good option for modeling DPSs with time-dependent boundary
conditions.

Based on the above discussions, a sliding window based dy-
namic KL modeling method (SW-KL) is proposed for DPSs
with time-dependent boundary conditions. A proper window is

designed to capture the most critical spatiotemporal dynamics
with others ignored. Then, the conventional KL methods can be
utilized to construct the analytical model. Because the window
is moving over time, the recent and most important data relevant
to the process will be captured, and the old data will be dropped
to improve the effectiveness and computation efficiency. In or-
der to bridge the gap between SW-KL and conventional KL
method, a forgetting vector is introduced, by which the influ-
ence of all data can be appropriately adjusted over time. The
proposed method is simple and ease of implementation for in-
dustrial application. A benchmark DPS with time-dependent
boundary conditions is chosen to validate the effectiveness of
the proposed SW-KL. In addition, SW-KL is also utilized to
predict the thermal distribution of a lithium-ion battery under
unknown boundary cooling. Experimental results demonstrate
its overwhelming advantage over the conventional KL method.
The main contributions of this paper are summarized as follows.

1) This paper makes the first attempt to utilize the sliding
window technique for spatiotemporal modeling.

2) SW-KL is a data-driven method and does not require the
analytical expression of a system, which implies that it is
very proper for industrial applications.

3) Experiments on a benchmark and a lithium-ion battery
have validated the effectiveness of SW-KL.

The rest of this paper is organized as follows. Section II is
the problem description. The proposed SW-KL is elaborated
in Section III. Section IV is the experimental study, and the
concluding remarks are summarized in Section V.

II. PROBLEM DESCRIPTION

A typical DPS that exhibits spatiotemporal dynamics is for-
mulated as follows:

∂y(x, t)
∂t

= α
∂

∂x

(
k(y(x, t))

∂y(x, t)
∂x

)
+ β

∂y(x, t)
∂x

+ f(y(x, t)) + ωb(x)u(t) (1)

with boundary and initial conditions

y(l1(t), t) = B1(t), y(l2(t), t) = B2(t), y(x, 0) = I(x)

where x ∈ [l1, l2] is the spatial variable, t is the temporal vari-
able, y(x, t) is the spatiotemporal state, u(t) is the control
value, b(x) is the spatial distribution matrix of u(t), k(y(x, t)),
and f(y(x, t)) are functions of spatiotemporal state and α, β,
and ω, are constants. Combined with the corresponding ini-
tial condition, i.e., y(x, 0) = I(x), and boundary conditions,
i.e., y(li(t), t) = Bi(t), i ∈ {1, 2}, the analytical or numerical
solutions of the DPS can be derived. In addition, a boundary
condition, i.e., y(li(t), t) = Bi(t), is called time-dependent if
and only if li(t) or Bi(t) is time-dependent.

Due to space/time coupled dynamics, DPSs always exhibit
infinite-dimensional nature and strong nonlinearities that make
them hard to model. When the boundary conditions are time-
dependent, the situation would be more worse. A sliding window
based dynamic spatiotemporal modeling method (SW-KL) will
be designed to handle the DPSs with time-dependent boundary
conditions for online application.
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Fig. 1. Framework of the proposed SW-KL modeling method.

III. SLIDING WINDOW BASED DYNAMIC

SPATIOTEMPORAL MODELING

A. Framework

The proposed SW-KL is a time/space separation method. As
shown in Fig. 1, n dominant SBFs, i.e., φi(x), i ∈ {1, . . . , n},
and the corresponding temporal coefficients (time series), i.e.,
αi(t), are extracted from the sampled spatiotemporal data.
More specifically, the SW-KL method is utilized to obtain
these dominant SBFs. Subsequently, the corresponding tem-
poral coefficients can be achieved. Due to its super approx-
imation ability, the radial basis function based neural network
(RBFNN) [26], [27] is modified to construct the temporal model
and then this temporal model will be employed to predict the
future temporal coefficients, i.e., α̂i(t). Finally, by synthesiz-
ing the predicted temporal coefficients and dominant SBFs to-
gether, the predicted spatiotemporal states, i.e., ŷn (x, t), can be
attained.

The main elements of the proposed SW-KL will be elabo-
rated in detail one by one. First, the sliding window method is
presented. Afterwards, the forgetting factor, which is used to
bridge the gap between SW-KL and conventional KL method,
is introduced. Next, the RBFNN-based temporal model is elab-
orated. Finally, the heuristic algorithm, which is used to decide
two parameters, i.e., the window size and the forgetting factor,
is designed

B. Sliding Window Method

The proposed method, i.e., SW-KL, is a time/space separation
based modeling method. It shares the same framework with
conventional KL modeling method (referred to Appendix A).
The main difference between two methods is mainly lying on
the data utilized for time/space separation.

As shown in Fig. 2, when modeling DPSs, conventional KL
treats previously acquired data and newly coming data equally.
It is very effective and accurate to DPSs with time-invariant
boundary conditions. However, this manner might lose its ef-
fectiveness on modeling DPSs with time-dependent boundary
conditions. When online modeling such DPSs, previously ac-
quired data may be out of date. Therefore, fresh data should be
carefully utilized. To this end, SW-KL designs a sliding window
to obtain recent data for calculating dominant SBFs. By sliding
this window along the time axis, the impact of previous data can
be alleviated and then current local dynamics can be captured.

Fig. 2. Conceptual illustration of SW-KL.

Fig. 3. Collected data at time t.

More specifically, as shown in Fig. 3, at time t, the conven-
tional method utilizes all collected data, i.e., Yt ∈ �N ×L , to
calculate dominant SBFs and temporal coefficients. First, the
spatial correlation matrix of Yt is calculated:

R̄t =
1
L

YtY
T
t

=
1
L

[
Yt−1 Dt

][Y T
t−1

DT
t

]
=

1
L

(Yt−1Y
T
t−1 + DtD

T
t )

=
L − l

L

1
L − l

Yt−1Y
T
t−1 +

l

L

1
l
DtD

T
t

=
L − l

L
R̄t−1 +

l

L
R̂t (2)

where Yt is divided into two parts, i.e., previous data Yt−1 ∈
�N ×(L−l) and newly collected data by the sliding window
Dt ∈ �N ×l . Afterwards, the dominant SBFs and temporal coef-
ficients can be attained according to (18) and (19) in Appendix
A, respectively.

As discussed above, for DPSs with time-dependent boundary
conditions, previous data may have a negative impact. In view of
this, SW-KL discards the previous data, i.e., Yt−1 ∈ �N ×(L−l) ,
and utilizes the data in the sliding window, i.e., Dt ∈ �N ×l , to
construct the current model. In this case, the spatial correlation
matrix R̂t is utilized to calculate dominant SBFs and temporal
coefficients.

C. Forgetting Factor

In order to bridge the gap between SW-KL and conventional
KL, an adjustable forgetting factor is introduced. Specifically,
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instead of discarding previous data totally, a forgetting factor μ
(0≤ μ ≤ 1) can be assigned to the previous spatial correlation
matrix R̄t−1 to alleviate its impact. So the spatial correlation
matrix R̄t can be rewritten as

R̄t = μ
L − l

L
R̄t−1 +

l

L
R̂t . (3)

Similarly, R̄t−1 can be represented as

R̄t−1 = μ
L − 2l

L − l
R̄t−2 +

l

L − l
R̂t−1. (4)

Furthermore, by combining (3) and (4), we can get

R̄t = μ2 L − 2l

L
R̄t−2 + μ

l

L
R̂t−1 +

l

L
R̂t . (5)

Expand this equation continually, and we can get

R̄t = μt L − tl

L
R̄0 +

l

L

t−1∑
i=0

μiR̂t−i (6)

where R̄0 is the spatial correlation matrix of initial data and R̂t−i

is the spatial correlation matrix of data in the sliding window at
time (t − i).

As can be seen, the weights of previous data, i.e., R̄0 and R̂t−i ,
decrease exponentially. In addition, it will be the case of sliding
window method by setting μ = 0 and the case of conventional
KL modeling method by setting μ = 1. As a result, the forgetting
factor can bridge the gap between sliding window method and
conventional KL modeling method. That is to say, by utilizing
the forgetting factor, a more general sliding window method is
achieved.

D. RBFNN-Based Temporal Model Construction

As shown in Fig. 1, after extracting φi(x) and αi(t), i ∈ {1,
. . . , n} from selected data, the RBFNN [26], [27] is utilized
to construct the temporal model. Mathematically, RBFNN uses
a weighted sum of simple basis functions to interpolate the
scatter points. Given the data points {(�xi, �yi)|�xi ∈ �D , �yi ∈
�d , i = 1, . . . ,M}, RBFNN maps the inputs to the outputs as
follows:

Y =

⎡
⎢⎢⎣

K(�x1 − �c1) · · · K(�x1 − �cm )
...

. . .
...

K(�xM − �c1) · · · K(�xM − �cm )

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

w1,1 · · · wd,1

...
. . .

...

w1,m · · · wd,m

⎤
⎥⎥⎦ (7)

where Y = [�y1, . . . , �yM ]T , K(·) is the radial basis function
(RBF), �ch and wj,h , j ∈ {1, . . . , d}, h ∈ {1, · · · ,m} are the
center of the hth hidden neuron and the weight between the hth
hidden neuron and the jth output neuron, respectively. When
training data are available, the weights, i.e., wj,h , can be ap-
proximated. Comprehensive details of RBFNN can be referred
to [26], and the universal approximation ability of RBFNN is
demonstrated in [27].

Algorithm 1: SW-KL.

Input: spatial correlation matrix at time t-1:R̄t−1;
newly collected data at time t:
Dt = {y(xi, tj )}N,L

i=1,j=L−l+1;
forgetting factor: μ
time lags: na, nb ;
input control signal: u(t);

Output :predicted spatiotemporal states;
1 Calculating spatial correlation matrix:

R̄t = μL−l
L R̄t−1 + 1

L DtD
T
t ;

2 Eigenvalue decomposition: R̄t φ̄i = λi φ̄i , i = 1, . . . , K
/*K is the rank of R̄t*/

3 Sorting spatial basis functions φ̄i in a descending order
according to their eigenvalues λi , i = 1, . . . ,K;

4 Selecting the first n sorted spatial basis functions as
dominant spatial basis functions, φ̄i , i = 1, . . . , n;

5 Calculating temporal coefficients: ᾱi = φ̄T
i Dt ,

i = 1, . . . , n;
6 RBFNN based temporal model construction;
7 Temporal predicting;
8 Spatiotemporal synthesis: y(xk , tj )≈

∑n
i φi(xk )αi(tj );

In order to model the temporal coefficients of a DPS by
RBFNN, the following points should be carefully featured.

1) The input vector is decided as �xi = [α1(t − 1), . . . , α1

(t − na), . . . , αn (t − 1), . . . , αn (t−na), u1(t−1), . . . ,
u1(t − nb), . . . , us(t − 1), . . . , us(t − nb)]T , where na
and nb denote the maximum input and control lags,
respectively, n is the number of dominant SBFs, s is the
number of control values. It should be noted that both
na and nb are set as 1 based on the correlation analysis.

2) The output vector is the prediction at time t, which is set
as �yi = {α1(t), . . . , αn (t)}.

3) Note that the number of hidden neurons (i.e., m) will
have a significant impact on the approximation accuracy.
In this paper, m is set to 20 manually.

4) Gaussian RBF is adopted. The famous K-means clus-
tering method [28] is utilized to seek the centers, i.e.,
�ci, i ∈ {1, . . . , m}. Besides, the global width is selected
as the average of all the Euclidian distances between the
ith RBF center and its nearest neighbor.

5) Due to its efficiency, LASSO [29] is utilized to identify
the weight matrix in (7).

Then the constructed RBFNN will be utilized for prediction.
Finally, by spatiotemporal synthesis according to (14), the spa-
tiotemporal states can be predicted.

In summary, the whole process of SW-KL modeling method,
which utilizes SW-KL to obtain dominant SBFs and tempo-
ral coefficients and utilizes RBFNN to construct the temporal
model, is summarized in Algorithm 1.

Remark: In this paper, our primary contribution is to pro-
pose a simple yet effective method to remedy the weakness of
conventional modeling methods on DPSs with time-dependent
boundary conditions. Although our main concentration is not
put on theory, a concise proof of the boundedness of SW-KL is
given in Appendix B.
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E. Selection of Forgetting Factor and Window Size

As shown in (6), the spatial correlation matrix at time t, R̄t ,
can be affected by the magnitude of μ, the initial spatial corre-
lation matrix R̄0, and the spatial correlation matrix of data in
the sliding window R̂t−i , i = 0, . . . , t − 1. If t is large enough,
the impact of R̄0 can be neglected due to that 0 ≤ μ ≤ 1. How-
ever, the significant impact of μ and R̂t−i cannot be eliminated.
More specifically, the impact of these two components can be
summarized as follows:

1) The smaller the μ is, the more quickly the impact of
previous data decreases.

2) R̂t−i has a direct relation to window size l and the smaller
the l is, the more quickly the impact of previous data
decreases.

Thus, the forgetting factor μ and the window size l can adjust
the impact of previous data that has a significant impact on
the estimation accuracy. It is worth to note that the impact of
previous data is varied on different industrial processes. So the
selection of u and l is not trivial. In addition, the interaction
between u and l would make this problem more intractable.

The selection of μ and l is an optimization problem in nature.
Given a pair of (μ, l), a candidate model can be constructed.
And its performance can be evaluated as follows:

f(μ, l) =

√
1
nl

∑n

i=1

∑l

j=1
(y(xi, tj ) − ŷ(xi, tj ))2 (8)

where {y(xi, tj )}n,l
i=1,j=1 is a validation set sampled from the

considered process and ŷ(xi, tj ) is the value approximated by
the candidate model. By a proper optimization method, a satis-
fied pair of (μ, l) can be achieved.

Evolutionary algorithms (EAs) [30] have gained immense
reputation in tackling complex optimization problems in recent
years. Although the optimum cannot be guaranteed theoreti-
cally, EAs can always offer a satisfied local optimum with lim-
ited computation resources. Among all kinds of EAs, differential
evolution (DE) [31] has shown its outperformed performance on
continuous optimization problems. So, a DE variant is designed
here to select a proper pair of (μ, l):
Step 1) Initialization:

Step 1.1) Generate a random population with NP solutions,
P ={(μ1, l1), . . . , (μNP, lNP)} and evaluate the population ac-
cording to (8), FV = {(f(μ1, l1), . . . , f(μNP, lNP)}.

Step 1.2) Set t = 1, where t is the generation number.
Step 2) Updating:

For i = 1, . . . , NP do
Step 2.1) If rand(0, 1) < 1

1+e−20( t / T −0. 5) , utilize “DE/current-

to-best/1/bin” to generate an offspring (μ̂i , l̂i), otherwise, utilize
”DE/current-to-rand/1” to generate the offspring, where T is the
predefined total number of generations.

Step 2.2) Evaluate the offspring according to (8), f(μ̂i , l̂i).
Step 2.3) If f(μ̂i , l̂i) < f(μi, li), replace (μi, li) with (μ̂i , l̂i)

and replace f(μi, li) with f(μ̂i , l̂i).
Step 3) Stopping criteria: If t > T , stop the evolution process
and output the local optimum configuration of (μ∗, l∗), other-
wise, set t = t + 1 and go to step 2).

The computation complexity of this DE variant is analyzed
as follows. In each generation, the DE operator would be

executed NP times. In addition, the whole algorithm would last
T generations. Hence, the total complexity of this algorithm
is O(T · NP). It should be noted that T is the total number of
generations that need to be set manually. By setting it properly,
a satisfied local optimum can be achieved.

IV. EXPERIMENTAL STUDY

In the experimental section, a benchmark DPS with time-
dependent/time-invariant boundary conditions is chosen to eval-
uate the performance of SW-KL. Afterwards, it is compared with
those of the conventional KL modeling method and the domain
transformation method (abbreviated as DT) [1].1 Besides, to
further demonstrate its advantages, SW-KL is also employed to
predict the thermal distribution of a lithium-ion battery under
unknown boundary cooling. For all experiments, the root mean
squared error (RMSE) is utilized as the performance index:

RMSE =

√
1

NL

∑N

i=1

∑L

j=1
(y(xi, tj ) − ŷ(xi, tj ))2 (9)

where y(xi, tj ) is the true spatiotemporal state at space point xi

and time tj . ŷ(xi, tj ) is the corresponding estimated spatiotem-
poral state.

A. Experiments on the Benchmark DPS With
Time-Dependent Boundary Conditions

The diffusion-reaction process with time-dependent bound-
ary conditions [1] is selected to validate the performance of
SW-KL:

∂y(x, t)
∂t

=
∂

∂x

(
k(x)

∂y(x, t)
∂x

)
+ βT (x)(e

−r
1+ y (x , t ) − e−r )

+ βu (b(x)u(t) − y(x, t)) (10)

with initial and boundary conditions

y(x, 0) = 0.5, y(0, t) = 0, y(l(t), t) = 0.

Corresponding parameters are set as

l(t) = π(1.4 − 0.4e−0.02t2. 7
), βu = 2, r = 4

βT (x) = 45(1.5 − e−0.5x), k(x) = e−0.5x

u(t) = [u1(t), . . . , u4(t)], b(x) = [b1(x), . . . , b4(x)]

where ui(t) = 1.1 + (4 + 2 ∗ rand)e
−i
5 sin(500t/7 + 2 ∗ rand)

− 0.4e
−i
20 sin(500t + 2 ∗ rand) and bi(x) = H[x − (i − 1)π/4]

− H[x − iπ/4] with H(.) being the standard Heaviside func-
tion. As shown in Fig. 4, time-dependent boundary conditions
result that the spatial domains of the diffusion-reaction pro-
cess are time-varying. Hence, this property makes it difficult to
model.

All related parameters are set as follows. A total of 18 sensors
are distributed uniformly along the space. A noise-free dataset of
1200 snapshots is collected from the system according to (10).
The dimensionless sampling time∇t is 0.01 s and simulation pe-
riod is 12 s. White noise bounded by 0.02 × (max(y)-min(y))/3

1We implement this method by using domain transformation to obtain dom-
inant SBFs and utilizing RBFNN to construct the temporal model.
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Fig. 4. Diffusion-reaction process with time-dependent boundary
conditions.

TABLE I
PERFORMANCE COMPARISON ON THE DIFFUSION-REACTION PROCESS

BASED ON AVERAGE RMSE OVER 2–12 S

TABLE II
PERFORMANCE COMPARISON ON THE DIFFUSION-REACTION PROCESS

BASED ON AVERAGE RMSE OVER 10–12 S

Fig. 5. Modeling RMSE from 2 to 12 s.

with 0 mean is added to the noise-free data to obtain the noisy
output. The first 200 noisy snapshots are utilized to construct
the nominal model while the rest 1000 noisy snapshots are em-
ployed for online spatiotemporal predicting. The window size l
is set as 10. The forgetting factor μ is set as 0.2. The number
of dominant SBFs is set as 2. Each experiment is repeated 50
independent runs.

The spatiotemporal modeling RMSEs of three methods are
summarized in Tables I and II and Fig. 5, respectively. Obvi-
ously, SW-KL outperforms conventional KL modeling method
on the diffusion-reaction process with time-dependent bound-
ary conditions. Though the DT method outperforms SW-KL at
the beginning, it will lose effectiveness to some extent when
time goes on. Besides, when the DT method is implemented,
the boundary conditions need to be known. It will limit DT’s
application in practical cases to a great extent.

Furthermore, the modeling error from 2 to 12 s and the mod-
eling error from 10 to 12 s are described in Figs. 6 and 7,

Fig. 6. Modeling error from 2 to 12 s. (a) Conventional KL. (b) DT.
(c) SW-KL.

Fig. 7. Modeling error from 10 to 12 s. (a) Conventional KL. (b) DT.
(c) SW-KL.

respectively. As shown in the figures, conventional KL model-
ing method performs extremely bad on time-dependent spatial
domains while the proposed SW-KL remedy its weakness to a
great extent. The DT method can outperform conventional KL
modeling method. However, it is still worse than SW-KL.

Additionally, to test SW-KL’s performance on DPS with time-
invariant boundary conditions, we set l(t) = 1.4π. The same
u(t) is utilized to excite the DPS described as (10), and some
data are sampled for modeling. Note that, the forgetting factor μ
is set to 1 to match with the process. The prediction RMSEs of
the conventional KL, the DT method, and SW-KL are 0.0552,
0.0583, and 0.0563, respectively. Hence, through setting the
forgetting factor properly, SW-KL can model DPSs with time-
invariant boundary conditions successfully.

To investigate the effectiveness of LASSO, we implement
SW-KL by replacing LASSO with group LASSO. Afterwards,
it is evaluated on the benchmark with time-dependent boundary
conditions. The RMSEs from 2–12 s and 10–12 s are 0.8172
and 0.1293, respectively. The experimental result shows that no
significant improvement presents. The reason may be that the
basic LASSO can catch the main characteristic of the temporal
model adequately.

B. Prediction of the Thermal Distribution of a Lithium-Ion
Battery Under Unknown Boundary Cooling

The thermal distribution of a lithium-ion battery is governed
by a PDE system [8]:

ρCp
∂T

∂t
=

∂

∂x

(
kx

∂T

∂x

)
+

∂

∂y

(
ky

∂T

∂y

)
+ q

q = aJ

(
φoc − φ − T

dφoc

dT

)
+ aprpi

2
p + anrn i2

n

(11)

with boundary condition

−λx
∂T

∂x
− λy

∂T

∂y
= h(T − Tair) (12)
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Fig. 8. Schematic diagram of the battery.

TABLE III
PREDICTION RMSE OF THE DISTRIBUTION OF BATTERY TEMPERATURE

OVER 200–850 S

Fig. 9. Prediction error at 450 s. (a) Conventional KL. (b) SW-KL.

where T is the time/space coupled temperature, ρ is the battery
density, Cp is the specific heat capacity, q is the heat generation
rate, Tair is the environment temperature. In this paper, the con-
vection coefficient h is varied due to unknown boundary cool-
ing. The values of corresponding parameters are given as fol-
lows: ρ = 103 kg/m3, Cp = 103 J/(kg · K), Tair = 23.5 ◦C, a =
10/m, ap = 26.6/m, an = 10.2/m, rp=9 E-5, rn=1.207 E-4,
and kx = ky = λx = λy = 80 W/(m·K).

A lithium-ion battery, whose material of the negative elec-
trode is LixC6 and the material of the positive electrode is
LixMn204, is used in this paper. Its schematic diagram is de-
scribed in Fig. 8. In this experiment, a current of 3C rate is
utilized. A total of 20 sensors are placed uniformly on the sur-
face of the battery for data sampling. A data matrix with 5 rows
and 4 columns is sampled every 1 s, and the sampling process
lasts for 850 s. In addition, the data of first 200 s are utilized to
construct the nominal model. The optimized μ and l are 0.3 and
10, respectively.

The experimental results are summarized in Table III. Be-
sides, the distributed prediction errors of two methods at 450,
650, and 850 s are described in Figs. 9–11, respectively. Exper-
imental results demonstrate the effectiveness and efficiency of
SW-KL.

Fig. 10. Prediction error at 650 s. (a) Conventional KL. (b) SW-KL.

Fig. 11. Prediction error at 850 s. (a) Conventional KL. (b) SW-KL.

V. CONCLUSION

A SW-KL method is proposed for DPSs with time-dependent
boundary conditions in this paper. A sliding window is designed
to capture the most important information from newly coming
data and ignore the old data that is outside of the window.
The conventional KL method can be applied inside the win-
dow to construct a feasible analytical process model with high
efficiency. A forgetting factor is also used to produce a more
general window where the influence of all data can be adjusted
exponentially over time. An efficient differential evolution vari-
ant is designed to select the forgetting factor and the window
size. Experimental comparisons demonstrate the superior per-
formance of the proposed method and its potential in industrial
applications. In the future work, utilizing SW-KL for control
problem would be taken into consideration. Besides, the incre-
mental method will be utilized to further improve the efficiency
of SW-KL.

APPENDIX A
KL MODELING METHOD

For simplicity, define the inner product, norm, and en-
semble average as: (f(x), g(x)) =

∫
Ω f(x)g(x)dx , ‖f(x)‖ =√

(f(x), f(x)) and < f(x, t) >= 1
L

∑L
t=1 f(x, t).
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The spatiotemporal state y(x, t) of a DPS is expanded by a
series of SBFs {φi(x)}∞i as follows:

y(x, t) =
∞∑
i

φi(x)αi(t) (13)

where αi(t) is the temporal coefficient of φi(x). Then, the sys-
tem is truncated and represented by n dominant SBFs

yn (x, t) =
n∑
i

φi(x)αi(t). (14)

Conventionally, the truncation process can be formulated as

min
φi (x)

〈‖y(x, t) − yn (x, t)‖2〉

s.t. (φi(x), φj (x)) =

{
1, i = j

0, i = j i, j = 1, . . . , n
.

(15)

The Lagrangian augment for optimizing (15) is

L = 〈‖y(x, t) − yn (x, t)‖2〉 +
n∑

i=1

λi((φi(x), φi(x)) − 1)

(16)
the necessary condition to obtain the optimal solutions is∫

Ω
R(x, ζ)φi(ζ)dζ = λiφi(x) (17)

where R(x, ζ) = 〈y(x, t), y(ζ, t)〉 is the correlation function of
two spatial points, i.e., x and ζ. φi(x) is just the right ith eigen-
function of R(x, ζ) and λi is the eigenvalue.

In practice, KL decomposition modeling method is imple-
mented in a discrete way. N sensors are utilized to collect data
and L snapshots Y = {y(xi, tj )}N,L

i=1,j=1 are sampled. By dis-
cretizing (17), we can derive that

R̄φ̄i = λi φ̄i (18)

where R̄ = 1
L Y Y T is the spatial correlation matrix and φ̄i is

the ith discrete SBF. Eigenvalue decomposition [32] of R̄ or
SVD decomposition [33] of Y can be utilized for calculating
the SBFs {φ̄i}K

i=1, where K is the rank of R̄.
For practical utilization, a small number n < K of dominant

SBFs are selected usually. We can arrange the eigenvalues λ1 >
λ2 > · · · > λK and eigenfunctions φ̄1(x), φ̄2(x), . . . , φ̄K (x) in
order of the magnitude of the eigenvalues. Then, the first n SBFs
are selected to capture 99% of the system energy.

Due to that dominant SBFs are orthogonal to each other,
corresponding temporal coefficients can be derived as follows:

αi(t) = (φi(x), yn (x, t)). (19)

And discrete realization is described as follows:

ᾱi = φ̄T
i Y. (20)

After the truncation, the infinite-dimensional DPS is re-
duced to n temporal ODE models αi(t), i ∈ {1, 2, . . . , n}.
Related parameters of the ODEs can be estimated from
the low-dimensional input/output dataset by using temporal

predicting methods, such as least squares [34], neural net-
works [35], and fuzzy models [36]. Then, the obtained ODE
model can be employed for prediction. Finally, the predicted
spatiotemporal dynamics can be obtained by spatiotemporal
synthesis.

APPENDIX B
ERROR BOUND OF SW-KL

In practice, KL decomposition is implemented by principal
component analysis. In the case, we will prove that SW-KL is
bounded as follows.

Theorem 1: The reconstruction error of SW-KL is bounded,
i.e., 1

l

∑l
i=1 ‖di − Φᾱi‖2

2 ≤ ε, where Dt = [d1, . . . , dl ], Φ =
[φ̄1, . . . , φ̄n ], and ε is a finite positive value.

Proof: In SW-KL, ( μ
L Yt−1Y

T
t−1 + 1

L DtD
T
t ) is utilized to cal-

culate Φ. We can rearrange this formula as follows:

μ

L
Yt−1Y

T
t−1 +

1
L

DtD
T
t =

1
L

(
√

μYt−1)(
√

μYt−1)T +
1
L

DtD
T
t

=
1
L

Ȳt−1Ȳ
T
t−1 +

1
L

DtD
T
t . (21)

Hence, the Φ calculated by (21) is also the dominant SBFs
of [Ȳt−1 Dt ], where Ȳt−1 =

√
μYt−1. This procedure is exactly

the conventional principal component analysis [37]. Hence, the
reconstruction error of [Ȳt−1 Dt ] is bounded, which can be de-
scribed as follows:

1
L

L−l∑
i=1

‖ȳi − Φα̃i‖2
2 +

1
L

l∑
i=1

‖di − Φᾱi‖2
2 ≤ ε

where Ȳt = [ȳ1, . . . , ȳL−l ] and ε is a finite positive value. By
setting ε = L

l (ε − 1
L

∑L−l
i=1 ‖ȳi − Φα̃i‖2

2), we can get that

1
l

l∑
i=1

‖di − Φᾱi‖2
2 ≤ ε.

�
Theorem 2: The approximation error of SW-KL is bounded,

i.e., 1
l

∑l
i=1 ‖di − Φα̂i‖2

2 ≤ δ, where α̂i is the temporal coeffi-
cient vector approximated by RBFNN and δ is a finite positive
value.

Proof: The approximation error is calculated as follows:

1
l

l∑
i=1

‖di − Φα̂i‖2
2 ≤ 1

l

(
l∑

i=1

‖di − Φᾱi + Φᾱi − Φα̂i‖2

)2

≤ 1
l

(
l∑

i=1

‖di − Φᾱi‖2 + ‖Φᾱi − Φα̂i‖2

)2

.

Because 1
l

∑l
i=1 ‖di − Φᾱi‖2

2 ≤ ε, ‖di − Φᾱi‖2
2 ≤ lε. That is

to say, ‖di − Φᾱi‖2 ≤ √
lε.
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Consequently, we can obtain that

1
l

l∑
i=1

‖di − Φα̂i‖2
2 ≤ 1

l

(
l
√

lε +
l∑

i=1

‖Φᾱi − Φα̂i‖2

)2

=
1
l

(
l
√

lε +
l∑

i=1

√
(ᾱi − α̂i)T ΦT Φ(ᾱi − α̂i)

)2

=
1
l

(
l
√

lε +
l∑

i=1

‖ᾱi − α̂i‖2

)2

.

The RBFNN can approximate any functions to an arbitrary ac-
curacy [26], [27], [38]. That is to say, ‖ᾱi − α̂i‖2 ≤ ρ, where ρ
is a finite positive value. Consequently, we can obtain that

1
l

l∑
i=1

‖di − Φα̂i‖2
2 ≤ 1

l

(
l
√

lε +
l∑

i=1

‖ᾱi − α̂i‖2

)2

≤ l(
√

lε + ρ)2.

By setting δ = l(
√

lε + ρ)2, we can derive that

1
l

l∑
i=1

‖di − Φα̂i‖2
2 ≤ δ.

�
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