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a b s t r a c t 

When extending a global optimization technique for constrained optimization, we must 

balance not only diversity and convergence but also constraints and objective function. 

Based on these two criteria, the famous teaching-learning-based optimization (TLBO) is 

improved for constrained optimization. To balance diversity and convergence, an efficient 

subpopulation based teacher phase is designed to enhance diversity, while a ranking- 

differential-vector-based learner phase is proposed to promote convergence. In addition, 

how to select the teacher in the teacher phase and how to rank two solutions in the 

learner phase have a significant impact on the tradeoff between constraints and objective 

function. To address this issue, a dynamic weighted sum is formulated. Furthermore, a sim- 

ple yet effective restart strategy is proposed to settle complicated constraints. By adopting 

the ε constraint-handling technique as the constraint-handling technique, a constrained 

optimization evolutionary algorithm, i.e., improved TLBO (ITLBO), is proposed. Experiments 

on a broad range of benchmark test functions reveal that ITLBO shows better or at least 

competitive performance against other constrained TLBOs and some other constrained op- 

timization evolutionary algorithms. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Most scientific and engineering optimization problems can be formulated as constrained optimization problems (COPs).

Hence, designing an effective constrained optimization algorithm is of great significance. Without loss of generality, a COP

is described as follows: 

minimize f ( � x ) , � x = (x 1 , . . . , x D ) ∈ S, L i ≤ x i ≤ U i 

subject to : g j ( � x ) ≤ 0 , j = 1 , . . . , l 

h j ( � x ) = 0 , j = l + 1 , . . . , m 

where f ( � x ) is the objective function; � x = (x 1 , . . . , x D ) is a D -dimensional decision vector (solution); L i and U i are the lower

and upper boundaries of x i , respectively; S = 

∏ D 
i =1 [ L i , U i ] is the decision space; g j ( � x ) is the j th inequality constraint; h j ( � x ) is

the ( j − l) th equality constraint; l is the number of inequality constraints; and (m − l) is the number of equality constraints.
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Conventionally, an equality constraint is always relaxed to two inequality constraints by a positive tolerance value δ: 

| h j ( � x ) | − δ ≤ 0 . (1) 

Conventionally, when a nature-inspired algorithm is utilized to solve COPs, the degree of constraint violation on the j th

constraint is calculated as follows: 

G j ( � x ) = 

{
max(0 , g j ( � x )) , 1 ≤ j ≤ l 

max (0 , 
∣∣h j ( � x ) | − δ

)
, l + 1 ≤ j ≤ m. 

(2) 

Consequently, the total degree of constraint violation on all constraints is calculated as follows: 

G ( � x ) = 

m ∑ 

j=1 

G j ( � x ) . (3) 

A solution 

�
 x is said to be a feasible solution, if and only if G ( � x ) is equal to zero. Otherwise, � x is called an infeasible solution.

The aim of a constrained optimization algorithm is to seek the optimal feasible solution. 

Various nature-inspired algorithms have been tailored to solve COPs due to their outstanding search performance [24] .

Recently, a novel nature-inspired algorithm, that is, teaching-learning-based optimization (TLBO) has been proposed [33] .

This method equates the whole optimization process with the teaching and learning process in a classroom. To be specific,

each solution represents a student, each dimension of a solution represents a subject, and the objective function value is re-

garded as the output of a class, respectively. In the teacher phase, the best solution is considered as the teacher. Sequentially,

a differential vector, which is directing to the teacher, is generated for each student to learn the outstanding performance.

In the learner phase, each student randomly learns from other students. TLBO exhibits numerous promising features such

as the ease of implementation, few algorithm-specific parameters, and powerful search ability. Zou et al. [50] proposed a

dynamic group strategy to promote diversity, where each learner is able to learn from the mean vector of its correspond-

ing group, rather than the mean vector of the whole class. In addition, in the learner phase, a quantum-behaved learning

is executed with a certain probability. Yu et al. [45] employed several techniques, which involve a feedback phase, muta-

tion crossover operation of differential evolution (DE) algorithms, and chaotic perturbation mechanism, to prevent TLBO’s

premature convergence. Waghmare [38] gave the correct understanding of TLBO algorithm, where the algorithm-specific

parameter-less concept of TLBO is explained. Shao et al. [35] proposed a hybrid meta-heuristic based on the probabilis-

tic teaching-learning mechanism to solve the no-wait flow shop scheduling problem with the makespan criterion. The

method includes four phases, i.e., previewing before class, teaching phase, learning phase, and reviewing after class. Yu

et al. [43] proposed a self-adaptive TLBO to identify the parameters of the photovoltaic model where each learner selects

different learning phases self-adaptively. Similarly, Zamli et al. [47] utilized Mamdani fuzzy inference system to select global

and local search operations adaptively. Due to the page limitation, other improved TLBOs for global optimization can be

referred to [2,11] . 

Though various studies have been done to improve the performance of TLBO for global optimization, few studies have

focused on constrained optimization. Degertekin and Hayalioglu [16] combined TLBO and a modified feasible-based mecha-

nism to optimize truss structures. Bhattacharjee et al. [3] utilized TLBO to solve economic load dispatch problems involving

different linear and nonlinear constraints. Banerjee et al. [1] presented a novel TLBO to solve economic load dispatch of

the thermal unit without considering transmission losses. In these studies, TLBO has been directly integrated with existing

constraint-handling techniques without modifications, which may limit its performance on constrained optimization to a 

great extent. Rao and Patel [32] proposed an elitist TLBO to tackle COPs. In this method, some elitist solutions are kept

and then used to replace some solutions in the main population. To compare two solutions, the feasibility rule [41] is

adopted. Though the elitist strategy can increase the convergence, it runs a high probability of being trapped in a local op-

timum. Moreover, the feasibility rule, which is also a greedy selection strategy, would make the situation more serious. Yu

et al. [46] proposed a diversity learning TLBO for cyclic scheduling of an ethylene cracking furnace system. In this method, a

new updating formula is presented for the learner phase. Mandal and Roy [23] incorporated quasi-opposition based learning

into TLBO to accelerate convergence and improve solution quality. Niknam et al. [29] proposed a modified TLBO to solve the

reserve constrained dynamic economic dispatch where a new phase named “modified phase” based on a self-adaptive learn-

ing mechanism is added. The modified TLBO includes a fitness weighted mean based teacher phase and a refined learner

phase. Baykaso ̆glu et al. [2] tested TLBO on some combinatorial optimization problems. Recently, an improved constrained

TLBO (ICTLBO) was proposed [44] . ICTLBO designs several strategies to prevent the premature convergence of the basic TLBO.

It reveals overwhelming advantages over elitist TLBO and some other state-of-the-art constrained optimization evolutionary 

algorithms (COEAs). It can be observed that the main emphasis of most of the above methods is put on balancing diversity

and convergence while the tradeoff between constraints and objective function is neglected to a certain degree. As we know,

the core issue of constrained optimization is to balance constraints and objective function. Hence, such a neglect would limit

their performance to a certain degree. 

When extending a global optimizer to a constrained one, we should be concerned with two kinds of tradeoffs, i.e., the

tradeoff between diversity and convergence, and the tradeoff between constraints and objective function. Researchers have 

explored the first tradeoff by developing various evolutionary algorithms (EAs) such as DE [39,49] , particle swarm optimiza-

tion (PSO) [30,48] , artificial bee colony algorithm (ABC) [14,15] , and TLBO [6] . A comprehensive survey on this topic can
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be referred to [13] . Among these algorithms, the subpopulation strategy is usually utilized to increase diversity [41] , while

ranking-differential-vector strategy is employed to promote convergence [17] . Wang et al. [41] proposed a subpopulation

based replacement strategy for constrained optimization. In this method, the population is sorted according to objective

function values. Afterward, the sorted population is divided into several subpopulations equally. By utilizing a ranking-

differential-vector strategy, Gong et al. modified DE for constrained optimization [17] . The tradeoff between constraints and

objective function has been considered in various constraint-handling techniques [24] . All of the referred experience can be

borrowed to extend a global optimizer to solve COPs. 

Based on the above observations, an improved TLBO (ITLBO) is proposed in this paper for constrained optimization. To

balance diversity and convergence, an efficient subpopulation based teacher phase and a ranking-differential-vector-based

learner phase are proposed. In terms of the tradeoff between constraints and objective function, a dynamic weighted sum

is formulated to select a teacher and rank solutions. A simple yet effective restart strategy is also designed to tackle COPs

with complicated constraints. The ε constraint-handling technique [36] , which is adopted by the winner of IEEE CEC2010

competition [22] , is taken as the constraint-handling technique. As a result, an alternative COEA (i.e., ITLBO), is presented.

The main contributions of this paper are highlighted as follows: 

• An efficient subpopulation strategy is designed to increase the diversity of the teacher phase. 
• A novel ranking differential vector is presented to promote the convergence of the learner phase. 
• A dynamic weighted sum is formulated to utilize the valuable knowledge summarized in the community of constrained

evolutionary optimization. 
• A simple yet effective restart strategy is presented to settle complicated constraints. 
• Extensive experiments on a broad range of benchmark test functions have demonstrated that ITLBO provides state-of-

the-art performance against other constrained TLBOs and COEAs. 

The remaining structure of this paper is arranged as follows: Section 2 introduces the preliminary knowledge of this

paper. The proposed ITLBO is elaborated in Section 3 . Section 4 summarizes the experimental study and corresponding

discussions. Finally, some concluding remarks are presented in Section 5 . 

2. Preliminary knowledge 

TLBO, ICTLBO, and the ε constraint-handling technique, which are closely related to ITLBO, are briefly reviewed. 

2.1. TLBO 

A basic TLBO is composed of two stages: the teacher phase and the learner phase. In the teacher phase, each solution

�
 x i (i ∈ { 1 , . . . , NP } ) learns from the teacher, which can be formulated mathematically as follows: 

�
 x i,new 

= 

�
 x i,old + rand · ( � x teacher − T F · � x mean ) . (4)

Where NP is the population size; � x i,old is the solution before learning from the teacher; � x i,new 

is the new position of the

solution; rand is a random number which is uniformly distributed in [0,1]; � x teacher is the teacher, which is the solution with

the best performance in the population; � x mean is the mean vector of all solutions, and T F = round(1 + rand) is randomly

assigned a value of either 1 or 2. Due to the fact that each solution learns from the best solution, this operator has the

property of convergence. 

In the learner phase, the solutions learn from each other. To be specific, � x i learns from a randomly selected solution 

�
 x l

as follows: 

�
 x i,new 

= 

{
�
 x i,old + rand · ( � x l − �

 x i,old ) , if f ( � x l ) < f ( � x i,old ) 

�
 x i,old + rand · ( � x i,old − �

 x l ) , if f ( � x i,old ) ≤ f ( � x l ) . 
(5)

As can be seen from Eq. (5) , in this manner, diversity can be preserved to a certain degree. It is interesting to find that TLBO

seems to be closely related to the mutation operators of DE [12,27,31] . In fact, TLBO is not a new metaphor per se but a

rebranding of DE/PSO or a combination of DE and PSO [18,26] . 

2.2. ICTLBO 

ICTLBO is a recent proposal which applies several techniques to enhance the TLBO’s ability to solve COPs. Firstly, the

population is divided into K subpopulations according to Euclidean distance. Then each learner learns from the teacher

through a differential vector that points to the teacher from the sub-mean position. In addition, each subpopulation would

exchange information with other subpopulations directly or indirectly. In summary, in the teacher phase, the solutions in

the first subpopulation are updated mathematically as follows: 

�
 x i,new, 1 = 

�
 x i,old, 1 + rand · ( � x teacher − T F · SubMean 1 ) + rand · ( � x r1 , 1 − �

 x r2 , 1 ) . (6)

And the solutions in the subsequent subpopulations learn from the teacher in the following manner: 

�
 x i,new,k = 

�
 x i,old,k + rand · ( � x teacher − T F · SubMean k ) + rand · ( � x SubBest,k −1 − �

 x r2 ,k ) , k ∈ { 2 , . . . , K} , (7)
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where � x i,old,k and 

�
 x i,new,k are the solutions before and after learning in the k th ( k ∈ { 1 , . . . , K} ) subpopulation, respectively;

SubMean k is the mean position of the k th subpopulation; � x SubBest,k −1 is the solution with the best performance in the (k −
1) th subpopulation, and 

�
 x r1 ,k and 

�
 x r2 ,k are two mutually different solutions selected from the k th subpopulation. Note that

neither � x r1 ,k nor � x r2 ,k is equal to � x i,old,k . 

In order to further improve the search ability, a diversity strategy is embedded into the learner phase. The new formula

is described as follows: 

�
 x i,new 

= 

�
 x i,old + rand · ( � x l − �

 x i,old ) + rand · ( � x r1 − �
 x r2 ) , if f ( � x l ) < f ( � x i,old ) (8)

�
 x d i,new 

= 

{
�
 x d 
i,old 

, if rand 1 < rand 2 

�
 x d r1 + r d · ( � x d r2 − �

 x d r3 ) , otherwise 
, if f ( � x i,old ) ≤ f ( � x l ) , (9) 

where d ∈ { 1 , . . . , D } represents the d th dimension; rand 1 and rand 2 are two random values uniformly distributed in [0,1];

r d is a random value uniformly distributed in [ −1,1], and 

�
 x r1 , � x r 2 , and 

�
 x r 3 are mutually different solutions randomly selected

from the population. Note that these three solutions are different from 

�
 x i . Additionally, the comparisons in the learner phase

are based on the feasibility rule. 

2.3. ε Constraint-handling technique 

In the ε constraint-handling technique, when comparing two vectors, say � x i and 

�
 x j , � x i is better than 

�
 x j if and only if the

following conditions are satisfied: ⎧ ⎨ 

⎩ 

f ( � x i ) < f ( � x j ) , if G ( � x i ) ≤ ε ∧ G ( � x j ) ≤ ε 

f ( � x i ) < f ( � x j ) , if G ( � x i ) = G ( � x j ) 

G ( � x i ) < G ( � x j ) , otherwise 

(10) 

In Eq. (10) , ε declines as the generation increases: 

ε = 

{ 

ε 0 

(
1 − t 

T 

)cp 

, if t ≤ T c 

0 , otherwise 

(11) 

cp = − log ε 0 + λ

log (1 − Tc 
T 

) 
, (12) 

where ε0 is the initial threshold which is set to the maximum degree of constraint violation of the initial population; t is

the current generation number; T is the maximum generation number; λ is set to 10 in this paper, and Tc is a parameter to

truncate the value of ε. 

3. ITLBO 

Two tradeoffs are critical to extending a global optimizer for constrained optimization. Bearing these in mind, the out-

standing global optimizer TLBO, is improved to solve COPs in this paper. A simple yet effective restart strategy is also pro-

posed to cope with complicated constraints. These two tradeoffs and the restart strategy will be introduced next. 

3.1. Tradeoff between diversity and convergence 

As we know, the basic TLBO is easy to be trapped in a local optimum. Accordingly, a variety of improved TLBOs have

been proposed to prevent such premature convergence. In ICTLBO, a subpopulation strategy and a diversity strategy are

designed to enhance the diversity of the teacher phase and the learner phase, respectively. However, the clustering process

in ICTLBO is time-consuming not only due to the Euclidean distance between every two solutions but also because the

Euclidean distance between each solution and the reference point must be calculated. In addition, each solution still learns

from the exclusive teacher, which might also be easily trapped. As we know, the operator in the learner phase of the basic

TLBO is more diverse than that in the teacher phase. Hence, an extra diversity strategy will make the basic TLBO more

disturbed, which might hinder its ability to locate the feasible optimum. In view of these, a novel efficient subpopulation

strategy is proposed to enhance the diversity of the teacher phase and a ranking differential vector is presented to reduce

the disturbance of the learner phase. Consequently, the tradeoff between diversity and convergence can be achieved in both

the teacher phase and the learner phase. 

In the teacher phase of ITLBO, after sorting the population in ascending order based on objective function values, we

divide it into K subpopulations with the same size. This can be considered as a simple and cheap niching technique [41] .

The clustering process is very efficient because only a sorting procedure is needed. Subsequently, the solutions in the k th

( k ∈ { 1 , . . . , K} ) subpopulation are updated as follows: 

�
 x i,new,k = 

�
 x i,old,k + rand · (SubT eacher k − T F · (SubMean k + 

�
 x i,old,k ) / 2) + rand · ( � x r1 ,k − �

 x r2 ,k ) , (13)
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where SubTeacher k is the solution with the smallest weighted sum in the i th subpopulation. Note that the weighted sum

will be described in the next sub-section. As shown in the equation, each subpopulation has its own teacher which would

prevent the premature convergence to a certain degree. In addition, each solution learns from the teacher through two

differential vectors: 

SubT eacher k − T F · (SubMean k + 

�
 x i,old,k ) / 2 = 

(SubT eacher k − T F · SubMean k ) 

2 

+ 

(SubT eacher k − T F · � x i,old,k ) 

2 

. (14)

As described above, in addition to the differential vector between SubTeacher k and SubMean k , another differential vector

between SubTeacher k and 

�
 x i,old,k is introduced. In this manner, the diversity of the teacher phase can be further enhanced. 

In the learner phase of ITLBO, when the weighted sum of � x i,old , i.e., F IT ( � x i,old ) , is greater than that of � x l , i.e, F IT ( � x l ) , the

solution is updated as the same to Eq. (8) . When F IT ( � x i,old ) ≤ F IT ( � x l ) , we modify the Eq. (9) of ICTLBO in the following way

to promote convergence: 

�
 x d i,new 

= 

{
�
 x d 
i,old 

, if rand 1 < rand 2 

�
 x d r1 + r d · � V 

d , otherwise 
(15)

where � V is a ranking differential vector which can be described as follows: 

�
 V = 

{
�
 x r2 − �

 x r3 , if F IT ( � x r2 ) < F IT ( � x r3 ) 
�
 x r3 − �

 x r2 , otherwise . 
(16)

As shown in Eqs. (15) and (16) , by utilizing the ranking differential vector � V , which points to the region with the smaller

weighted sum, convergence can be promoted. 

In summary, by the above process, the tradeoff between diversity and convergence can be maintained in both the teacher

phase and the learner phase of ITLBO. 

3.2. Tradeoff between constraints and objective function 

The tradeoff between constraints and objective function is another core issue to be addressed. In the proposed ITLBO,

how to select a teacher and how to rank two solutions are closely related to this issue. To address this issue, a weighted

sum FIT is formulated as follows: 

F IT ( � x i ) = p f · f norm ( � x i ) + (1 − p f ) · G 

norm ( � x i ) (17)

f norm ( � x i ) = 

f ( � x i ) − f min 

f max − f min 

(18)

G 

norm ( � x i ) = 

G ( � x i ) − G min 

G max − G min 

, (19)

where f max and f min are the maximum and minimum objective function values in the population, respectively, and G max and

G min are the maximum and minimum degree of constraint violation in the population, respectively. Note that when f max is

equal to f min , f norm ( � x i ) is set to 0. Similarly, when G max is equal to G min , G 

norm ( � x i ) is set to 0. As described in Eqs. (17) –

(19) , a bigger pf would prefer more information of objective function while a smaller pf would prefer more information of

constraints. Thus, pf is significant to the tradeoff between constraints and objective function. 

However, it is not easy to select a proper pf due to the fact that it is optimization-stage-dependent and problem-

dependent. Fortunately, in the community of constrained evolutionary optimization, many researchers have found that using

more information of objective function at the early stage while less at the later stage is beneficial to constrained optimiza-

tion [36,39] . The reasons are intuitive. At the early stage of optimization, the population is expected to explore the infeasible

regions, which is beneficial to locating discrete feasible regions and seeking the optimum on the boundary between the in-

feasible and feasible regions. Hence, more information of objective function is preferred. On the contrary, at the later stage,

the population needs to enter the feasible regions promptly. Too much information of objective function would hinder this

process. Motivated by these observations, the parameter pf decreases dynamically as generation increases according to a

trend function [17] : 

p f = 1 − 0 . 5 ·
(

1 − cos 

(
t 

T 
· π

))
, (20)

where t is the current generation number, and T is the maximum generation number. As shown in Fig. 1 , pf decreases with

the increase of generation. Consequently, more information of objective function would be used at the early stage while

less would be utilized at the later stage. After attaining the weighted sum according to Eqs. (17) –(20) , this value would be

utilized to select a teacher and rank two solutions. In summary, by the above analyses and implementation, the tradeoff be-

tween constraints and objective function can be achieved. It should be noted that though similar techniques [9,10,28] have

been utilized to balance diversity and convergence, they have been scarcely utilized to achieve the tradeoff between con-

straints and objective function. 
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Fig. 1. The decreasing trend of pf . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 1. The dynamic weighted sum method can be considered as a constraint-handling technique. According to the no

free lunch theorem [42] , it is impossible for a single constraint-handling technique to outperform all other techniques on

every problem. Hence, we utilize the ε constraint-handling technique to select promising solutions for the next generation.

In Section S-V of the supplementary file, experiments have been conducted to validate the effectiveness of combining these

two constraint-handling techniques in this manner. 

3.3. Restart strategy 

In practice, some COPs have constraints with complicated properties such as multi-modal and nonlinearities. Due to the

complex infeasible region formulated by these constraints, a COEA can easily be trapped in a local optimum. To remedy this

weakness, a simple yet effective restart strategy is proposed. 

Before executing this restart strategy, we need to judge whether the population has been trapped already. Conventionally,

if the population converges in the infeasible region, the differences among all solutions are small. Consequently, the standard

deviation of either objective function values or degree of constraint violation would be tiny. In addition, both the dynamic

weighted sum method and the ε constraint-handling technique prefer more information of objective function at the early

stage while less at the later stage. Hence, under normal circumstances, the differences among the degree of constraint

violation of solutions would be relatively significant when all solutions are infeasible. In view of these, we can infer that the

population has been trapped in the infeasible region if the following two conditions are satisfied: 

• The whole population is infeasible. 
• The standard deviation of degree of constraint violation is smaller than a predefined threshold μ. 

Once these two conditions are satisfied, the restart strategy is triggered, that is, the population is regenerated randomly.

Based on these descriptions, an alternative constrained TLBO, that is, ITLBO, is presented. The whole framework of the

algorithm is summarized in Algorithm 1 . Note that, in order to match with the ε constraint-handling technique, both the

teacher phase and learner phase are executed with a probability of 0.5 for each solution. 

4. Experimental study 

4.1. Benchmark test functions and parameter settings 

In order to validate the performance of ITLBO, two sets of benchmark test suites, which include test functions with

various tough properties, were adopted. To be specific, these two test suites are benchmarks from the IEEE CEC2006 com-

petition [20] and the IEEE CEC2010 competition [22] , respectively. 

The population size NP and the maximum number of function evaluations MaxFEs are described in Table 1 . To reduce ran-

domness, 25 independent runs were performed for each test function. In addition, the tolerance value δ was set to 0.0 0 01.

Note that the settings of MaxFEs , number of runs, and δ are in accordance with the suggestions in [20,22,44] . Additionally,

they were kept the same in all compared algorithms. In addition, K in the subpopulation strategy, μ in the restart strategy,

and T c in the ε constraint-handling technique [36] were set to 10, 1E −08 and 0.5 T , respectively. 
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Algorithm 1: The Framework of ITLBO. 

1 Step (1) Initialization: 

2 Step (1.1) Set the generation number t = 1 ; Set the maximum generation number T = 

⌊
MaxF Es 

NP 

⌋
, where MaxF Es is the 

maximum function evaluations. 

3 Step (1.2) Generate a random population with NP solutions, P = { � x 1 , . . . , � x NP } and evaluate the population 

F V = { ( f ( � x 1 ) , G ( � x 1 )) , . . . , ( f ( � x NP ) , G ( � x NP )) } . 
4 Step (1.3) Set the initial threshold value ε 0 of the ε constraint-handling technique as the maximum degree of 

constraint violation in the population. Afterward, calculate cp according to Eq. (12). 

5 Step (1.4) Initialize the number of subpopulations K, and the threshold of the restart strategy, μ; 

6 Step (2) Updating: 

7 Step (2.1) Calculate the parameter p f according to Eq. (20). 

8 Step (2.2) Calculate the weighted sum of all solutions according to Eqs. (17)–(19). 

9 Step (2.3) Sort the population in ascending order according to objective function values and then divide it into K 

subpopulations equally. 

10 Step (2.4) Execute the improved TLBO to generate offspring: 

11 For i = 1 , . . . , NP do 

12 IF rand < 0 . 5 

13 Execute the teacher phase according to Eq. (13). 

14 Else 

15 Execute the learner phase according to Eqs. (8), (15), and (16). 

16 End If 

17 End For 

18 Step (2.5) Evaluate the offspring. 

19 Step (2.6) Execute the ε constraint-handling technique for selection. 

20 Step (2.7) Execute the restart strategy . 

21 Step (3) Stopping criteria: If the stopping criterion is satisfied, then stop the procedure and output the feasible 

solution with the smallest objective function value, otherwise, go to Step (2) . 

Table 1 

Maximum number of function evaluations MaxFEs and population size NP . 

Test functions MaxFEs NP 

24 test functions from IEEE CEC2006 2.4E + 05 50 

18 test functions with 10D from IEEE CEC2010 2.0E + 05 80 

18 test functions with 30D from IEEE CEC2010 6.0E + 05 120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Experiments on 24 benchmark test functions from IEEE CEC2006 

Firstly, ITLBO was tested on 24 test functions from IEEE CEC2006. The performance of ITLBO was compared with those

of several COEAs with various EAs [44] : ICTLBO, ETLBO, DE with the feasibility rule, PSO with the feasibility rule, ABC with

the feasibility rule, SAMODE, and ATMES. 

The experimental results of these eight methods were summarized in Table 2 where “Mean OFV” and “Std Dev” represent

the average and standard deviation of objective function values over 25 independent runs, respectively. Note that the ex-

perimental results of ICTLBO, ETLBO, DE, PSO, ABC, SAMODE, and ATMES were obtained from [44] . As we know, the optima

of test functions from IEEE CEC2006 are provided in [20] . Hence, a run is successful if and only if f ( � x best ) − f ( � x � ) < 10 −4 ,

where � x � is the true optimum calculated mathematically and 

�
 x best is the best solution sought by a COEA. Furthermore, the

Mean OFV would be marked in bold, if a COEA can be successful over 25 runs consistently on the considered test function.

If the COEA cannot achieve a feasible solution consistently, a symbol “NA ” would be presented. Meanwhile, “−” represents

that the results cannot be obtained from the original literature. There are no feasible solutions for g20 and it is extremely

difficult to obtain a feasible solution for g22. Besides, most of the literature does not take these two test functions into

consideration. Hence, we also exclude these two test functions and mainly focus on the remaining 22 test functions. 

As shown in Table 2 , ITLBO could achieve the true optima of 16 test functions successfully. ICTLBO could also satisfy the

successful condition on 16 test functions. However, ETLBO, DE, PSO, ABC, SAMODE, and ATMES could not achieve the optima

of more than 14 test functions. To further compare the eight methods statistically, the multi-problem Wilcoxon’s test was

implemented. As shown in Table 3 , ITLBO performed better than DE, PSO, ABC, and ATMES at a 0.05 significance level, while

no significant difference existed between ITLBO and the three algorithms: ICTLBO, ETLBO, and SAMODE. In summary, ITLBO

outperformed or at least had competitive performance on test functions from IEEE CEC 2006. 
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Table 2 

Experimental results of ITLBO and other seven selected methods over 25 independent runs on 22 test functions from IEEE CEC2006. 

Test function Criteria ITLBO ICTLBO ETLBO DE PSO ABC SAMODE ATMES 

g01 Mean OFV −15 −15 −15 −14.555 −14.71 −15 −15 −15 

Std Dev 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 − − − 0.0 0E + 0 0 0.0 0E + 0 0 

g02 Mean OFV −0.80226 −0.799622 −0.803169 −0.665 −0.41996 −0.792412 −0.798735 −0.787637 

Std Dev 3.26E −03 5.17E −03 0.0 0E + 0 0 − − − 8.80E −03 1.18E −02 

g03 Mean OFV −1.0 0 05 −1.0 0 05 −1.0 0 03 −1 0.764813 −1 −1.0 0 05 −0.9999 

Std Dev 2.58E −09 1.97E −13 1.40E −04 − − − 0.0 0E + 0 0 1.02E −04 

g04 Mean OFV −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 

Std Dev 3.71E −12 7.43E −12 0.0 0E + 0 0 − − − 0.0 0E + 0 0 7.43E −12 

g05 Mean OFV 5126.4967 5126.4967 5168.7194 5264.27 5135.973 5185.714 5126.4967 5127.7321 

Std Dev 2.78E −12 1.86E −12 5.41E + 01 − − − 0.0 0E + 0 0 2.15E + 00 

g06 Mean OFV −6961.8139 −6961.8139 −6961.8139 −6954.434 −6961.8139 −6961.813 −6961.8139 −6961.8139 

Std Dev 0.0 0E + 0 0 3.71E −12 0.0 0E + 0 0 − − − 0.0 0E + 0 0 3.71E −12 

g07 Mean OFV 24.3062 24.3062 24.31 24.31 32.407 24.473 24.3069 24.31456 

Std Dev 1.51E −05 5.40E −14 7.11E −03 − − − 1.59E −03 1.42E −02 

g08 Mean OFV −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 

Std Dev 1.42E −17 0.0 0E + 0 0 0.0 0E + 0 0 − − − 0.0 0E + 0 0 6.12E −17 

g09 Mean OFV 680.63 680.63 680.63 680.63 680.63 680.64 680.63 680.64 

Std Dev 3.36E −13 4.64E −13 0.0 0E + 0 0 − − − 1.16E −05 1.26E −02 

g10 Mean OFV 704 9.24 9 7049.3128 7143.45 7147.334 7205.5 7224.407 7059.8134 7277.470 

Std Dev 4.29E −05 8.39E −02 1.13E + 02 − − − 7.86E + 00 1.97E + 02 

g11 Mean OFV 0.7499 0.7499 0.74998 0.901 0.7499 0.75 0.7499 0.7499 

Std Dev 1.13E −16 1.13E −16 7.06E −05 − − − 0.0 0E + 0 0 2.82E −04 

g12 Mean OFV −1 −1 −1 −1 −0.998875 −1 −1 −1 

Std Dev 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 − − − 0.0 0E + 0 0 0.0 0E + 0 0 

g13 Mean OFV 0.054008 0.207885 0.83851 0.872 0.569358 0.968 0.05392 0.053959 

Std Dev 3.30E −04 1.92E −01 2.26E −01 − − − 1.75E −08 1.06E −05 

g14 Mean OFV −47.7649 −47.7649 −43.805 −29.2187 −40.871 −40.1071 −47.68115 −47.7279 

Std Dev 3.80E −05 2.10E −08 2.32E + 00 1.36E + 01 2.29E + 00 7.14E + 00 4.04E −02 5.05E −02 

g15 Mean OFV 961.72 961.72 962.044 961.7537 965.5154 966.2868 961.72 961.7153 

Std Dev 5.80E −13 4.64E −13 4.39E −01 1.22E −01 3.72E + 00 3.12E + 00 0.0 0E + 0 0 2.69E −04 

g16 Mean OFV −1.9052 −1.9052 −1.9052 −1.9052 −1.9052 −1.9052 −1.9052 −1.902816 

Std Dev 4.53E −16 2.79E −15 0.0 0E + 0 0 2.34E −16 2.34E −16 2.34E −16 0.0 0E + 0 0 8.41E −04 

g17 Mean OFV 8959.8 8880.595253 8895.7544 8932.04 4 4 8899.4721 8941.9245 8853.5397 8896.4008 

Std Dev 3.77E + 01 3.69E + 01 5.14E + 01 4.68E + 01 3.79E + 01 4.26E + 01 1.15E −05 3.27E + 01 

g18 Mean OFV −0.866025 −0.866025 −0.865755 −0.86165 −0.8276 −0.86587 −0.866024 −0.843026 

Std Dev 1.68E −05 1.48E −13 5.09E −04 3.67E −03 1.11E −01 3.37E −04 7.04E −07 6.35E −02 

g19 Mean OFV 32.662 32.6570 33.3699 32.768 36.6172 36.0078 32.75734 33.37968 

Std Dev 1.06E −02 1.56E −03 7.87E −02 6.28E −02 2.04E + 00 1.83E + 00 6.15E −02 3.52E −01 

g21 Mean OFV 222.22 193.72451 206.118 366.9193 345.6569 275.5436 193.7713 NA 

Std Dev 4.84E + 01 6.00E −11 2.99E + 01 9.13E + 01 6.36E + 01 6.05E + 01 1.96E −02 NA 

g23 Mean OFV −256.4 −400.03716 −352.263 −7.2642 −25.9179 −4.3254 −360.8176 NA 

Std Dev 1.42E + 02 7.44E −02 2.33E + 01 2.30E + 01 4.30E + 01 1.37E + 01 1.96E + 01 NA 

g24 Mean OFV −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 

Std Dev 9.06E −16 5.66E −15 0.0 0E + 0 0 9.36E −16 9.36E −16 9.36E −16 0.0 0E + 0 0 0.0 0E + 0 0 

Table 3 

Results of the multiple-problem Wilcoxon’s test for ITLBO and other 

seven selected methods on test functions from IEEE CEC2006. 

Algorithm R + R - p -value α= 0.1 α= 0.05 

ICTLBO 102.5 128.5 ≥ 0.2 No No 

ETLBO 163.0 90.0 ≥ 0.2 Yes Yes 

DE 224.5 28.5 7.515E-04 Yes Yes 

PSO 202.5 28.5 1.4872E-03 Yes Yes 

ABC 203.5 27.5 1.275E-03 Yes Yes 

SAMODE 137.0 116.0 ≥ 0.2 No No 

ATMES 207.5 46.0 7.4 4 4E-03 Yes Yes 

 

 

 

 

 

4.3. Experiments on 36 benchmark test functions from IEEE CEC2010 

In order to further validate the performance of ITLBO, 36 test functions with 10D (10 dimensions)/30D (30 dimensions)

from IEEE CEC2010 were adopted. These test functions are more complicated than those from IEEE CEC2006. Hence, they

can evaluate the performance of a COEA adequately. Similarly, six COEAs with various EAs were chosen as competitors, these

were, ICTLBO [44] , MS-( μ + λ)-CDE [44] , CMODE [40] , Co-CLPSO [21] , RGA [34] , and EABC [25] . The true optima of these

36 test functions are not provided in [22] . Hence, the average and standard deviation of objective function values achieved
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Table 4 

Experimental results of ITLBO and other six selected methods over 25 independent runs on 18 test functions with 10D from IEEE CEC2010. 

Test function Criteria ITLBO ICTLBO MS-( μ + λ) −CDE CMODE Co-CLPSO RGA EABC 

C01 Mean OFV −7.47E −01 −7.44E −01 −7.42E −01 −7.47E −01 −7.34E −01 −7.21E −01 −7.16E −01 

Std Dev 1.87E −03 5.45E −03 1.17E −02 2.35E −13 1.78E −02 2.62E −02 2.69E −02 

C02 Mean OFV −2.03E+00 −1.72E+00 −2.25E+00 −1.48E+00 � −2.27E+00 1.48E + 00 −1.25E −01 

Std Dev 8.14E −02 8.14E −01 1.28E −02 4.88E −01 1.46E −02 4.94E −01 1.58E + 00 

C03 Mean OFV 0.0 0E + 0 0 1.41E + 09 5.91E + 13 2.84E + 00 3.55E −01 2.55E + 12 2.45E + 12 

Std Dev 0.0 0E + 0 0 6.00E + 09 1.22E + 14 4.23E + 00 1.78E + 00 2.36E + 07 1.01E + 12 

C04 Mean OFV −1.00E −05 −1.00E −05 −1.00E −05 −9.99E −04 −9.34E −06 1.20E −03 8.56E −01 

Std Dev 3.39E −15 1.73E −21 6.77E −13 2.90E −08 1.07E −06 4.20E −03 3.01E + 00 

C05 Mean OFV −4.84E+02 −6.82E+01 −4.69E+02 −4.50E+02 � −4.84E+02 5.16E + 01 3.65E + 02 

Std Dev 1.11E −11 3.56E + 01 4.87E + 01 1.61E + 02 1.96E −02 2.93E + 01 1.17E + 02 

C06 Mean OFV −5.79E+02 −5.46E+02 −5.09E+02 −5.78E+02 −5.79E+02 −1.18E+02 4.38E + 02 

Std Dev 2.39E −04 3.30E + 01 1.05E + 02 1.60E −02 5.73E −04 −1.18E+02 8.60E + 01 

C07 Mean OFV 0.0 0E + 0 0 3.80E −24 0.0 0E + 0 0 6.69E −15 7.97E −01 6.21E + 00 7.16E + 01 

Std Dev 0.0 0E + 0 0 1.50E −23 0.0 0E + 0 0 8.95E −15 1.63E + 00 9.30E + 00 5.19E + 01 

C08 Mean OFV 8.47E + 00 1.72E + 01 8.01E + 00 8.94E + 00 6.09E −01 6.21E + 00 4.11E + 02 

Std Dev 4.09E + 00 2.64E + 01 4.65E + 00 3.98E + 00 1.43E + 00 9.30E + 00 9.36E + 02 

C09 Mean OFV 0.0 0E + 0 0 3.56E + 05 2.98E + 04 2.13E+06 � 1.99E + 10 2.72E + 08 2.02E + 12 

Std Dev 0.0 0E + 0 0 1.00E + 06 1.49E + 05 1.04E + 07 9.97E + 10 3.12E + 02 1.81E + 12 

C10 Mean OFV 1.92E −01 1.31E + 06 4.55E + 01 1.35E+05 � 4.97E + 10 1.04E + 09 1.75E + 12 

Std Dev 9.62E −01 6.59E + 06 2.89E + 01 1.61E + 06 2.49E + 11 5.84E + 04 2.58E + 12 

C11 Mean OFV −1.51E −03 −1.52E −03 −4.95E −03 −7.7E −02 � −1.61E −01 � 7.43E −01 −1.23E+00 �

Std Dev 1.30E −05 4.83E −14 1.72E −02 2.85E −02 6.60E −01 2.65E + 00 3.04E + 00 

C12 Mean OFV −2.39E+01 −5.01E+01 −1.99E −01 −6.14E+02 � −2.34E+00 −1.49E+01 −1.80E+02 �

Std Dev 1.14E + 02 1.41E + 02 2.50E −06 2.74E + 02 2.43E + 01 1.67E + 02 2.76E + 02 

C13 Mean OFV −6.52E+01 −6.84E+01 −6.37E+01 −5.79E+01 −6.53E+01 −6.61E+01 −6.57E+01 

Std Dev 1.78E + 00 4.42E −14 2.34E + 00 4.09E + 00 2.58E + 00 2.23E + 00 2.50E + 00 

C14 Mean OFV 0.0 0E + 0 0 3.19E −01 9.53E + 01 8.18E −09 3.19E −01 4.93E + 04 8.00E + 10 

Std Dev 0.0 0E + 0 0 1.10E + 00 4.01E + 02 1.64E −08 1.10E + 00 3.41E + 03 2.37E + 11 

C15 Mean OFV 3.54E + 00 3.73E + 01 4.83E + 13 1.20E + 02 2.99E + 00 8.92E + 08 2.57E + 13 

Std Dev 4.97E + 00 9.47E + 01 4.24E + 13 3.48E + 02 3.31E + 00 4.12E + 04 2.86E + 13 

C16 Mean OFV 2.27E −01 4.27E −12 8.27E −02 6.82E −05 5.99E −03 8.30E −01 8.35E −02 

Std Dev 3.11E −01 2.13E −11 1.38E −01 1.49E −04 1.33E −02 3.71E −01 9.11E −02 

C17 Mean OFV 3.91E −01 7.68E + 00 4.93E −34 4.37E −02 3.80E −01 6.65E −01 3.24E + 00 

Std Dev 6.71E −01 3.71E + 01 1.71E −33 1.12E −01 4.53E −01 1.03E + 00 6.83E + 00 

C18 Mean OFV 0.0 0E + 0 0 2.59E + 00 0.0 0E + 0 0 5.75E + 00 2.32E −01 2.39E + 00 3.47E + 02 

Std Dev 0.0 0E + 0 0 1.20E + 01 0.0 0E + 0 0 2.64E + 02 9.96E −01 1.93E + 00 3.71E + 02 

Table 5 

Results of the multiple-problem Wilcoxon’s test for ITLBO andother six se- 

lected methods on 18 test functions with 10D from IEEE CEC2010. 

Algorithm R + R − p -value α= 0.1 α= 0.05 

ICTLBO 127.0 26.0 1.500E −02 Yes Yes 

MS −( μ + λ) −CDE 131.5 39.5 4.572E −02 Yes Yes 

CMODE 154.0 17.0 1.579E −03 Yes Yes 

Co-CLPSO 128.5 42.5 6.324E −02 Yes No 

RGA 160.5 10.5 3.738E −04 Yes Yes 

EABC 152.0 1.0 3.052E −05 Yes Yes 

 

 

 

 

 

 

 

 

 

 

 

 

by a method over 25 independent runs were taken as the comparison criteria. Due to the fact that we can only obtain the

average and standard deviation of objective function values of ICTLBO, MS-( μ + λ)-CDE, Co-CLPSO, RGA, and EABC from their

original papers, we first compared all methods in terms of average values. When a method achieved the best performance

on the corresponding test function, the average value was highlighted with a gray background. To test statistical significance,

the multi-problem Wilcoxon’s test and the Friedman’s test were implemented to compare the seven methods concurrently. 

In terms of the test functions with 10D, the average and standard deviation of objective function values, the results of the

multi-problem Wilcoxon’s test, and the results of the multi-problem Friedman’s test were summarized in Tables 4 , 5 , and

Fig. 2 (a), respectively. Note that a “�” was marked when a method could not achieve a feasible solution at the end of some

runs. As shown in Table 4 , ITLBO achieved the best performance on 10 test functions. However, the six competitors, i.e.,

ICTLBO, MS-( μ + λ)-CDE, CMODE, Co-CLPSO, RGA, and EABC revealed the best performance on four, five, one, five, zero, and

zero test functions, respectively. As shown in Table 5 , all R + values were bigger than the R − values. It indicates that ITLBO

was superior to its six competitors. The p -values were less than 0.1 and 0.05 in six cases and five cases, respectively. As

described in Fig. 2 (a), ITLBO ranked the first in the Friedman’s test. In summary, ITLBO was superior to the six competitors

on 18 test functions with 10D from IEEE CEC2010. 
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Fig. 2. Ranking of ITLBO and other six selected methods by the Friedman’s test on 18 test functions from IEEE CEC2010: (a) 10D, (b) 30D. 

Table 6 

Experimental results of ITLBO and other six selected methods over 25 independent runs on 18 test functions with 30D from IEEE CEC2010. 

Test function Criteria ITLBO ICTLBO MS-( μ + λ)-CDE CMODE Co-CLPSO RGA EABC 

C01 Mean OFV −8.20E −01 −8.18E −01 −7.35E −01 −8.20E −01 −7.16E −01 −7.72E −01 −7.31E −01 

Std Dev 8.95E −04 2.97E −03 5.32E −02 −8.20E −01 5.03E −02 3.2E −02 4.88E −02 

C02 Mean OFV −2.03E+00 −3.83E −01 −1.27E+00 9.75E −01 −2.20E+00 −3.96E −01 2.56E + 00 

Std Dev 7.64E −02 1.72E + 00 4.21E −01 6.25E + 01 1.93E −01 5.51E −01 9.43E −01 

C03 Mean OFV 7.84E + 01 2.13E + 11 2.21E + 13 2.18E + 01 3.51E+01 � 3.57E+12 � 1.07E+13 �

Std Dev 6.31E + 01 2.13E + 11 2.51E + 13 1.25E + 01 3.31E + 01 2.68E + 12 2.21E + 12 

C04 Mean OFV 1.69E −03 1.59E −01 6.85E + 00 6.72E −04 1.13E −01 � 1.71E+01 � 2.15E+01 �

Std Dev 1.14E −03 3.24E −01 9.94E + 00 4.24E −04 5.63E −01 1.36E + 01 6.22E + 00 

C05 Mean OFV −4.82E+02 −5.98E+01 −3.57E+02 2.77E+02 � −3.12E+02 1.87E + 02 3.72E + 02 

Std Dev 1.73E + 00 8.86E + 00 8.38E + 01 2.03E + 02 8.83E + 01 7.90E + 01 7.894E + 01 

C06 Mean OFV −5.30E+02 −4.64E+02 −3.23+02 −4.96E+02 � −2.45E+02 −1.97E+02 � 4.74E + 02 

Std Dev 4.80E −01 9.20E + 01 1.28E + 02 2.15E + 02 3.95E + 01 9.39E + 01 6.30E + 01 

C07 Mean OFV 1.59E −01 2.88E + 01 1.59E −01 5.24E −05 1.12E + 00 3.65E + 01 1.33E + 02 

Std Dev 7.97E −01 4.68E + 01 7.97E −01 5.89E −05 1.83E + 00 2.27E + 01 2.06E + 02 

C08 Mean OFV 1.14E + 01 1.01E + 02 1.46E + 03 3.68E −01 4.75E + 01 2.88E + 10 1.50E + 02 

Std Dev 2.79E + 01 1.22E + 02 3.16E + 03 2.62E −01 1.13E + 02 4.23E + 07 7.15E + 01 

C09 Mean OFV 2.86E + 00 1.01E + 07 2.51E + 09 1.72E+13 � 1.48E + 08 2.72E + 08 1.61E + 13 

Std Dev 1.43E + 01 3.52E + 07 3.75E + 09 1.07E + 13 2.45E + 08 3.12E + 04 9.29E + 12 

C10 Mean OFV 3.29E + 01 6.01E + 09 1.41E + 09 1.60E+13 � 1.40E + 09 6.99E + 08 1.50E + 13 

Std Dev 1.41E + 01 2.31E + 10 1.91E + 09 7.00E + 12 5.84E + 09 6.13E + 03 9.77E + 12 

C11 Mean OFV −3.86E −04 −3.64E −04 2.69E −03 9.5E −03 � 2.82E −02 � −1.68E −01 � −5.89E −01 �

Std Dev 1.14E −05 4.98E −05 7.12E −03 9.7E −03 3.21E −02 5.72E −01 6.49E −01 

C12 Mean OFV −1.98E −01 −1.99E −01 5.80E −01 −3.46E+00 � −1.99E −01 � −1.25E+02 � 5.07E + 01 

Std Dev 2.39E −03 6.16E −05 3.10E + 00 7.35E + 02 1.18E −04 1.54E + 02 3.70E + 02 

C13 Mean OFV −5.05E+01 −6.81E+01 −5.96E+01 −3.89E+01 −6.08E+01 −6.34E+01 −6.49E+01 

Std Dev 1.18E + 00 7.78E −01 2.60E + 00 2.17E + 00 1.12E + 00 1.23E + 00 1.38E + 00 

C14 Mean OFV 4.78E −01 8.02E + 00 6.79E + 05 9.31E + 00 1.28E + 00 8.78E + 07 9.95E + 03 

Std Dev 1.32E + 00 8.69E + 00 3.39E + 06 2.46E + 00 1.90E + 00 3.13E + 03 1.92E + 04 

C15 Mean OFV 2.38E + 01 2.91E + 01 1.20E + 13 1.51E + 13 5.11E + 01 7.99E + 09 3.79E + 13 

Std Dev 2.51E + 01 3.63E + 01 2.20E + 13 8.26E + 12 9.18E + 01 5.13E + 04 3.44E + 13 

C16 Mean OFV 0.0 0E + 0 0 0.0 0E + 0 0 6.92E −03 6.30E −02 5.24E −16 1.05E + 00 8.21E −01 

Std Dev 0.0 0E + 0 0 0.0 0E + 0 0 2.86E −02 2.72E −02 4.67E −16 3.99E −02 2.57E −01 

C17 Mean OFV 9.65E −01 3.29E + 01 2.65E −01 3.12E+02 � 1.39E + 00 5.49E + 01 2.68E + 01 

Std Dev 1.73E + 00 1.35E + 02 2.32E −01 2.75E + 02 4.26E + 00 1.98E + 01 1.63E + 01 

C18 Mean OFV 9.07E −17 8.82E −04 7.45E −01 7.36E + 03 1.09E + 01 4.40E + 01 2.93E + 02 

Std Dev 3.18E −16 3.22E −03 1.89E + 00 3.12E + 03 3.72E + 01 1.61E + 01 3.53E + 02 

Table 7 

Results of the multiple-problem Wilcoxon’s test for ITLBO and other six 

selected methods on 18 test functions with 30D from IEEE CEC2010. 

Algorithm R + R − p -value α= 0.1 α= 0.05 

ICTLBO 151.5 19.5 2.571E −03 Yes Yes 

MS-( μ + λ)-CDE 148.0 5.0 1.526E −04 Yes Yes 

CMODE 141.0 12.0 1.068E −03 Yes Yes 

Co-CLPSO 160.5 10.5 3.738E −04 Yes Yes 

RGA 164.5 6.5 1.259E −04 Yes Yes 

EABC 163.0 8.0 1.907E −04 Yes Yes 
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Table 8 

Results of ITLBO and ITLBO-WoR on three test 

functions from IEEE CEC2010. 

Test function ITLBO ITLBO-WoR 

feasible rate feasible rate 

C11 with 10D 100% 28% 

C12 with 10D 100% 0% 

C11 with 30D 100% 92% 

Table 9 

Experimental results of ITLBO with different K over 25 independent runs on 18 test functions with 30D from IEEE CEC2010. 

Test function Criteria K = 10 K = 7 K = 8 K = 9 K = 11 K = 12 K = 13 

C01 Mean OFV (feasible rate) −8.20E −01 −8.20E −01 ≈ −8.20E −01 ≈ −8.19E −01 ≈ −8.20E −01 ≈ −8.20E −01 ≈ −8.20E −01 ≈
Std Dev 8.95E −04 1.23E −03 1.86E −03 1.36E −03 1.19E −03 9.48E −04 1.56E −03 

C02 Mean OFV (feasible rate) −2.03E+00 −2.01E+00 ≈ −2.04E+00 ≈ −2.04E+00 ≈ −2.10E+00 ≈ −2.05E+00 ≈ −2.03E+00 ≈
Std Dev 7.64E −02 6.34E −02 4.86E −02 6.46E −02 7.01E −02 5.31E −02 7.24E −02 

C03 Mean OFV (feasible rate) 7.84E + 01 5.49E + 01 + 5.75E + 01 + 5.21E + 01 + 5.16E + 01 + 8.15E+01 ≈ 8.15E+01 ≈
Std Dev 6.31E + 01 3.89E + 01 4.90E + 01 4.46E + 01 3.57E + 01 5.63E + 01 5.36E + 01 

C04 Mean OFV (feasible rate) 1.69E −03 68% − 1.24E −03 ≈ 56% − 52% − 4.42E −03 ≈ 76% −
Std Dev 1.14E −03 NA 1.63E −03 NA NA 1.20E −02 NA 

C05 Mean OFV (feasible rate) −4.82E+02 92% − −4.82E+02 ≈ −4.82E+02 ≈ 20% − −4.81E+02 ≈ 96% −
Std Dev 1.73E + 00 NA 2.02E + 00 1.42E + 00 NA 2.07E + 00 NA 

C06 Mean OFV(feasible rate) −5.30E+02 96% − −5.31E+02 ≈ −5.30E+02 ≈ 80% − −5.31E+02 ≈ −5.31E+02 ≈
Std Dev 4.80E −01 NA 1.00E −01 3.74E −01 NA 1.25E −01 3.10E −01 

C07 Mean OFV (feasible rate) 1.59E −01 4.06E −14 + 4.10E −14 + 1.59E −08 + 9.58E −01 ≈ 1.59E −01 ≈ 3.19E −01 ≈
Std Dev 7.97E −01 2.02E −13 2.03E −13 7.73E −08 1.74E + 00 7.97E −01 1.10E + 00 

C08 Mean OFV (feasible rate) 1.14E + 01 5.85E + 00 + 5.04E + 00 + 5.61E+01 − 6.14E+01 − 7.80E + 00 + 8.58E+01 −
Std Dev 2.79E + 01 2.02E + 01 2.35E + 01 1.39E + 02 9.83E + 01 2.66E + 01 3.98E + 02 

C09 Mean OFV (feasible rate) 2.86E + 00 5.76E+00 ≈ 7.38E+00 ≈ 8.97E+00 ≈ 2.21E+01 − 6.08E+00 ≈ 2.25E+01 −
Std Dev 1.43E + 01 2.79E + 01 3.53E + 01 2.86E + 01 6.05E + 01 3.04E + 01 7.68E + 01 

C10 Mean OFV (feasible rate) 3.29E + 01 4.03E+01 ≈ 3.78E+01 ≈ 4.92E+01 ≈ 1.57E+02 − 3.99E+01 ≈ 4.91E+01 ≈
Std Dev 1.41E + 01 4.03E + 01 2.40E + 01 8.87E + 01 2.98E + 02 4.13E + 01 5.18E + 01 

C11 Mean OFV (feasible rate) −3.86E −04 20% − 88% − 28% − 28% − 92% − 36% −
Std Dev 1.14E −05 NA NA NA NA NA NA 

C12 Mean OFV (feasible rate) −1.98E −01 36% − −1.63E −01 ≈ 36% − 0% − −1.75E −01 ≈ 80% −
Std Dev 2.39E −03 NA 1.79E −01 NA NA 8.18E −02 NA 

C13 Mean OFV (feasible rate) −5.05E+01 −5.02E+01 ≈ −5.03E+01 ≈ −5.08E+01 ≈ −5.35E+01 ≈ −5.09E+01 ≈ −5.09E+01 ≈
Std Dev 1.18E + 00 8.27E −01 1.16E + 00 1.03E + 00 1.25E + 00 1.24E + 00 1.10E + 00 

C14 Mean OFV (feasible rate) 4.78E −01 4.78E −01 ≈ 4.78E −01 ≈ 6.38E −01 ≈ 3.21E −01 ≈ 9.57E −01 ≈ 3.19E −01 ≈
Std Dev 1.32E + 00 1.32E + 00 1.32E + 00 1.49E + 00 1.10E + 00 1.74E + 00 1.10E + 00 

C15 Mean OFV (feasible rate) 2.38E + 01 2.07E+01 ≈ 1.68E+01 ≈ 2.66E+01 ≈ 2.41E+01 ≈ 1.97E+01 ≈ 1.92E+01 ≈
Std Dev 2.51E + 01 1.33E + 01 8.62E + 00 2.85E + 01 2.60E + 01 1.76E + 01 6.37E + 00 

C16 Mean OFV (feasible rate) 0.0 0E + 0 0 0.0 0E+0 0 ≈ 0.0 0E+0 0 ≈ 0.0 0E+0 0 ≈ 0.0 0E+0 0 ≈ 0.0 0E+0 0 ≈ 0.0 0E+0 0 ≈
Std Dev 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 0.0 0E + 0 0 

C17 Mean OFV (feasible rate) 9.65E −01 96% − 8.55E+01 − 3.73E −01 ≈ 96% − 96% − 4.99E −01 ≈
Std Dev 1.73E + 00 NA 4.25E + 02 1.32E + 00 NA NA 1.19E + 00 

C18 Mean OFV (feasible rate) 9.07E −17 5.80E −21 + 4.91E −18 ≈ 5.68E −20 ≈ 3.10E −14 − 6.05E −17 ≈ 1.48E −19 ≈
Std Dev 3.18E −16 2.33E −20 1.94E −17 2.76E −19 1.28E −13 1.45E −16 4.89E −19 

+ / 4 3 2 1 1 0 

− / 6 2 4 10 2 6 
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In the case of the test functions with 30D, corresponding results were reported in Tables 6 , 7 , and Fig. 2 (b), respectively.

As shown in Table 6 , ITLBO was not worse than all other six competitors on 10 test functions. However, ICTLBO, MS-( μ + λ)-

CDE, CMODE, Co-CLPSO, RGA, and EABC revealed the best result on three, one, five, one, zero, and zero test functions,

respectively. The R + and R − values in Table 7 reflected that ITLBO was better than its competitors. Furthermore, the p -

values were less than 0.05 in all cases. As shown in Fig. 2 (b), ITLBO ranked the first in the Friedman’s test. In summary,

ITLBO was superior to the six competitors on 18 test functions with 30D from IEEE CEC2010. 

Taking all the above experimental results into consideration, ITLBO has the outstanding performance when tackling COPs.

4.4. Effectiveness of the restart strategy 

As described in Section 3.3 , the restart strategy plays a significant role in ITLBO. From the analyses, it is beneficial to

tackling COPs with complicated constraints. In order to validate this statement experimentally, a method called ITLBO-WoR



142 B.-C. Wang et al. / Information Sciences 456 (2018) 131–144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was implemented by removing the restart strategy from ITLBO. Then 36 test functions from IEEE CEC2010 were selected to

evaluate ITLBO and ITLBO-WoR. Their performance were compared based on the feasible rate, that was, percentage of runs

where at least one feasible solution was found. The experimental results of those test functions, in which at least one of the

compared methods could not achieve a feasible solution at the end of some runs, were summarized in Table 8 . 

As shown in Table 8 , ITLBO-WoR failed to achieve a feasible solution consistently on 3 test functions, which were, C11

with 10D, C12 with 10D, and C11 with 30D. More specifically, ITLBO-WoR could find a feasible solution of C11 with 10D, C12

with 10D, and C11 with 30D on only seven, zero, and 23 runs, respectively. However, ITLBO, which was aided by the restart

strategy, could find a feasible solution consistently on these three test functions. The experimental results reflected that the

proposed restart strategy can improve the ability to find a feasible solution. 

4.5. Sensitivity of parameter K 

As described in Section 3.1 , when balancing diversity and convergence, the number of subpopulations K , is critical. Intu-

itively, a bigger K would result in more subpopulations and then introduce more diversity. In addition, too much diversity

would disturb the process of finding the optimum while too little diversity would run the high risk of premature conver-

gence. Hence, parameter K should be chosen properly to achieve the tradeoff between diversity and convergence. In view

of this, parameter K was decided experimentally in this sub-section. For this purpose, seven ITLBO variants with different

K values: K = 7 , K = 8 , K = 9 , K = 10 , K = 11 , K = 12 , and K = 13 were implemented. These seven variants were evaluated

on the 18 test functions with 30D from IEEE CEC2010. Their performance was compared by the Wilcoxon’s rank sum test

at a 0.05 significance level. 1 When a method could not find a feasible solution on the considered test function over 25 runs

consistently, the average value and standard deviation were replaced by the feasible rate and NA , respectively. Additionally,

“ + ”, “ − ”, and “ ≈ ” represent that a method was better than, worse than, and similar to ITLBO with K = 10 , respectively. 

As shown in Table 9 , ITLBO with K = 10 outperformed those with K = 7 , K = 9 , K = 11 , K = 12 , and K = 13 on six, four,

10, two, and six test functions, respectively. However, ITLBO with K = 7 , K = 9 , K = 11 , K = 12 , and K = 13 revealed better

performance than that with K = 10 on four, two, one, one, and zero functions, respectively. Hence, ITLBO with K = 10 was

better than those with K = 7 , K = 9 , K = 11 , K = 12 , and K = 13 as a whole. It seems that ITLBO with K = 8 was better

than that with K = 10 . However, ITLBO with K = 8 cannot find a feasible solution of C11 consistently. As we know, seeking

a feasible solution is vital to a COEA. Taking all of this into consideration, K = 10 was chosen in this paper. It is interesting

to find that it seems to exist no explicit rules to tune K . It may be that the performance of ITLBO would be impaired if the

population could not be divided into K subpopulations equally. 

Remark 2. for the sake of paper length, some further discussions are referred to the supplementary file. 

5. Conclusions 

This paper has extended the outstanding global optimizer, i.e., TLBO, to solve COPs. An efficient subpopulation based

teacher phase and a ranking-differential-vector-based learner phase have been proposed to balance diversity and conver-

gence. A dynamic weighted sum has also been formulated to achieve the tradeoff between constraints and objective func-

tion. Furthermore, a simple yet powerful restart strategy has been designed to cope with complicated constraints. Extensive

experiments on two benchmark test suites have validated that: (1) ITLBO outperformed or at least had competitive perfor-

mance against two constrained TLBOs as well as some other state-of-the-art COEAs, and (2) each component of ITLBO was

effective and significant. 

Compared with the basic TLBO, ITLBO involves two algorithm-specific parameters, which are, the number of subpopu-

lations K , and the threshold of the restart strategy μ. Due to the presentation of the sorting procedure, the computation

time complexity of ITLBO is slightly higher than that of TLBO. In the future, effort will be put on reducing algorithm-specific

parameters as well as improving the efficiency of ITLBO. Furthermore, the two tradeoffs will be utilized to extend other

global optimizers to the constrained ones. To be specific, a diversity operator and a convergence operator need to be de-

signed, respectively. When these two operators are designed, the tradeoff between constraints and objective function should

be considered. Furthermore, ITLBO will be further enhanced by DE [7] or group counseling optimizer [5] to solve real-life

engineering problems such as wireless sensor networks [19] , filter design problems [8] , antenna array design problems [4] ,

and unit commitment problems [37] . 
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