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A Unified Framework of Epidemic Spreading
Prediction by Empirical Mode Decomposition-

Based Ensemble Learning Techniques
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Abstract— In this paper, a unified susceptible-exposed-infected-
susceptible-aware (SEIS-A) framework is proposed to combine
the epidemic spreading process with individuals’ self-query
behaviors on the Internet. An epidemic spreading prediction
model that contains two phases is established based on the
SEIS-A framework. To deal with the nonstationary complex
characteristic of the time series data of disease density, it is
decomposed through the empirical mode decomposition (EMD)
method to obtain the intrinsic mode functions (IMFs) in phase
I. To enhance the prediction performance, the ensemble learning
techniques that use the self-query data as an external input are
applied to these IMFs in phase II. Finally, an empirical study
on the prediction of weekly consultation rates of hand-foot-and-
mouth disease (HFMD) in Hong Kong is conducted to validate
the effectiveness of the proposed method. The main advantage
of this method is that it outperforms other learning methods on
fluctuating complex epidemic spreading data.

Index Terms— Empirical mode decomposition (EMD), ensem-
ble learning, epidemic spreading prediction.

I. INTRODUCTION

S INCE the pioneering work of Bernoulli [1], mathematical
modeling of epidemic spreading has received continuous

attention for more than 200 years. Classical epidemic models,
such as the susceptible-infected-susceptible (SIS) [2]–[11]
model and the susceptible-infected-recovered (SIR) [12]–[17]
model, have been well studied. Based on these models, more
realistic models have been proposed to better illustrate real dis-
ease spreading behavior. For instance, the susceptible-infected-
recovered-susceptible (SIRS) [18] model describes that the
immunity of a recovered individual may be lost, causing
him or her susceptible again, while the susceptible-exposed-
infected-recovered (SEIR) [19] model contains exposed indi-
viduals who have been infected by the disease but cannot
transmit it to others yet.

The interaction between epidemic spreading and the aware-
ness of individuals transmission has been considered in some
studies [20]–[22]. For example, in [21], the analysis of the
interrelation between two processes accounting for the spread-
ing of an epidemic, and the information awareness to prevent
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its infection, on top of multiplex networks was presented. All
of these studies were focused on the impact of this interaction
on the disease spreading behavior. However, the awareness
of individuals may also lead to self-query behaviors on the
Internet. For instance, if an individual has some pre-symptoms
such as a runny nose and cough, when he tries to find out
whether he has been infected by influenza, the fastest way is
to search these symptoms on search engines such as Google
on the internet. These self-query behaviors can provide more
insights into the upcoming outbreak of a certain disease.
In addition, these behaviors often occur days or even weeks
before this individual is completely infected and seeks medical
help in hospitals or clinics. Therefore, the search data on the
Internet can be utilized to predict the spreading scale of a
certain disease weeks before its outbreak.

Recently, some researchers have investigated the disease
spreading prediction problem with search data on the
Internet [23]–[27]. In [27], an influenza tracking model,
AutoRegression with Google search data (ARGO) that uses
publicly available search data on the Internet, is proposed.
Despite these innovative methods proposed in these studies,
a unified framework to combine disease spreading with indi-
viduals’ self-query behaviors is missing. Moreover, all these
studies utilize influenza data with significant seasonal charac-
teristic and little fluctuation. For some other disease data that
contain more randomness and fluctuations, the performance
of these methods may not be satisfied. Furthermore, for the
complex disease spreading data, there exist many features and
one learning method can only learn part of them. The major
difficulty is how to design learning methods to capture these
features effectively to accomplish the prediction task.

As a nonlinear and nonstationary time-domain decomposi-
tion method, empirical mode decomposition (EMD) [28]–[30]
decomposes a time series into multiple empirical modes,
known as the intrinsic mode functions (IMFs). One intrinsic
mode can comprise fluctuations with a variety of wavelengths
at different time steps for signals with intermittent fluctuations.
Hence, EMD has natural advantages in decomposing nonsta-
tionary complex data. Motivated by the advantages of EMD
in decomposing nonstationary time series, it is intuitively used
to decompose these original disease spreading time series
into multiple IMFs with different frequencies. In this manner,
these features can be scattered to different IMFs. The problem
that comes with it is how to design learning methods to
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capture these scattered features. Since the ensemble learning
techniques have been designed to combine multiple learning
methods together to improve the learning performance in the
community of machine learning, they are used to capture the
features in different IMFs as a matter of course.

The proposed EMD-based method is inherently superior
over traditional ensemble learning methods due to the fact
that every single method in traditional ensemble learning is
trained with the same original time series. In this manner,
these features are still mixed up and difficult to learn.

Motivated by the above-mentioned considerations, a unified
framework named susceptible-exposed-infected-susceptible-
aware (SEIS-A) is proposed. This framework combines the
traditional SEIS [31]–[34] epidemic model with the self-query
behaviors of individuals on the Internet. To better accom-
modate the fluctuating complex data, EMD is employed to
decompose the complex time series data into the IMFs. For
each IMF, one learning method is utilized. The ensemble
learning techniques that use the self-query data as an external
input are applied to these IMFs.

The main contributions of this paper can be summarized as
follows.

1) A novel unified SEIS-A framework that combines epi-
demic spreading and individuals’ self-query behaviors
on the Internet is proposed.

2) A prediction model that combines the advantages of
EMD and ensemble learning techniques is presented
based on the proposed SEIS-A framework.

3) The proposed method outperforms other learning meth-
ods on the empirical study of the prediction of
hand-foot-and-mouth disease (HFMD) spreading in
Hong Kong.

The rest of this paper is organized as follows. The SEIS-A
framework and problem description are given in Section II.
EMD and ensemble learning techniques are described in
Section III. In Section IV, the prediction results on HFMD
in Hong Kong are presented. Finally, we conclude this paper
in Section V.

II. SEIS-A FRAMEWORK AND PROBLEM DESCRIPTION

Considering the fact that individuals in the exposed (E)
state may search for suspicious symptoms and other keywords
related to a certain disease through search engines on the
Internet, an SEIS-A framework is proposed in Fig. 1. In this
framework, S denotes the susceptible individuals that are
vulnerable to the considered disease, E denotes the exposed
individuals that are in the latency period and have presymp-
toms but cannot transmit the disease to others, and I denotes
the infected individuals; Another state named Aware (A) is
introduced to denote individuals that are aware of the disease.
Individuals in the A state may search for some keywords
related to the disease on the Internet, such as the symptoms,
treatment approaches, and so on. These searching behaviors
reveal information on potentially infected individuals. There-
fore, the self-query data related to a certain disease can be
utilized to predict the epidemic spreading scale.

Based on the assumption of homogeneous mixing
approximation [2], the mathematical model of the SEIS-A

Fig. 1. SEIS-A framework.

framework can be described by
⎧
⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎩

ds(t)

dt
= −β1(t)s(t)i(t) + γ (t)i(t)

de(t)

dt
= −β2(t)e(t) + β1(t)s(t)i(t)

di(t)

dt
= −γ (t)i(t) + β2(t)e(t)

(1)

and
�

a(t) = αe(t)

Q(t + 1) = f (a(t))
(2)

where s(t), e(t), i(t), and a(t) denote the density of indi-
viduals in the susceptible state, exposed state, infected state,
and aware state, respectively. To be noticed, (2) is based on
the assumption that a certain number of individuals in the
exposed state become aware of the disease and search for some
keywords related to the disease on the Internet. The parameters
β1(t) and β2(t) denote the time-varying transmission rate of
individuals from the susceptible state to the exposed state
and the exposed state to the infected state, respectively. γ (t)
denotes the time-varying curing rate of infected individuals.
In addition, α is the proportion of exposed individuals that
is aware of the disease. Q(t) denotes the self-query data that
are related to the disease; f (·) denotes the search functions
for aware individuals. Equation (1) can be rewritten in the
following discrete form:

⎧
⎨⎨

⎨⎩

s(t + 1) = s(t) + (−β1(t)s(t)i(t) + γ (t)i(t))�t

e(t + 1) = e(t) + (−β2(t)e(t) + β1(t)s(t)i(t))�t

i(t + 1) = i(t) + (−γ (t)i(t) + β2(t)e(t))�t

(3)

where �t denotes the sampling interval for discretization.
Combining (2) with (3), it is easy to obtain the following

equation:

i(t + 1) = i(t)+(−γ (t)i(t)+ β2(t)

α
f−1( Q(t + 1)))�t (4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FENG AND WANG: UNIFIED FRAMEWORK OF EPIDEMIC SPREADING PREDICTION 3

Algorithm 1 EMD
1: For any given data {x(t)}, identify all the local maxima

and minima;
2: Connect all the local maxima and minima by natural

cubic spline lines separately to form the upper and lower
envelops, denoted by {u(t)} and {l(t)}, respectively;

3: Calculate the mean of the envelops as m(t) = [u(t) +
l(t)]/2;

4: Define the difference between the data and the mean as the
proto-IMF, h(t) = x(t) − m(t);

5: Check the proto-IMF according to the IMF definition and
the terminal criterion to determine whether {h(t)} is an
IMF.

6: If {h(t)} is not an IMF, then replace {x(t)} with {h(t)} and
repeat step 1-5 until it satisfies the IMF definition.

7: If {h(t)} is an IMF, then assign the proto-IMF {h(t)} as an
IMF component {c(t)}.

8: Repeat step 1-7 by replacing {x(t)} with the residue r(t) =
x(t) − c(t).

9: End the procedure when the residue contains no more than
one extremum.

where f −1(·) is the inverse function of the search function
f (·). Equation (4) indicates that the disease density at step
t + 1 can be inferred by the disease density at step t and the
self-query data collected at step t + 1. In addition, the time-
varying characteristic of parameters β2(t) and γ (t) that are
due to the randomness characteristic of the disease makes the
prediction of disease density more difficult.

Therefore, the disease spreading prediction problem is
defined as follows: how to predict the disease density based on
the previously collected disease density data and the currently
collected self-query data?

To compensate for the unknown time-varying parameters
β2(t) and γ (t) in (4), it is assumed that these parameters can
be inferred by the previous disease density as follows:

�
γ (t) = g1(i(t), i(t − 1), . . . , i(t − l))

β2(t) = g2(i(t), i(t − 1), . . . , i(t − l)).

Hence, the following disease density prediction model is
obtained:
i(t+1) = i(t)+(−g1(I(t))·i(t)+ g2(I(t))

α
· f−1(Q(t+1)))�t

(5)

where I(t) = [i(t), i(t − 1), . . . , i(t − l)]T and l denotes the
autoregressive (AR) order of the time series.

III. METHODOLOGY

In this section, a methodology framework based on EMD
and ensemble learning techniques is proposed.

A. Methodology Framework

In the epidemic spreading prediction problem in (5), the dis-
ease density i(t+1) at step t+1 is associated with the previous
disease density i(t), the time-varying model parameters β2(t)

Fig. 2. Methodology framework.

Fig. 3. GOPC + GP from week 1, 2010 to week 13, 2018.

and γ (t), and the self-query data Q(t +1). The self-query data
Q(t+1) refer to the search activities of keywords related to the
considered disease from search engines on the Internet such
as Google. Due to the timely access of these data, the self-
query data at step t + 1 are used as the external input of
the learning model. Since the time-varying parameters β2(t)
and γ (t) are unknown, in order to establish the epidemic
spreading prediction model, the previous disease density data
I(t) = [i(t), i(t − 1), . . . , i(t − l)]T are used to compensate
for these unknown parameters.

As it is presented in Fig. 2, the proposed methodology
contains two phases. In phase I, the collected time series
data of disease density {i(t)} are decomposed by EMD to
obtain the IMFs. In phase II, these IMFs combined with the
self-query data Q(t + 1) are utilized as the input of various
learning methods for ensemble learning techniques to predict
the disease density at step t + 1.

B. Empirical Mode Decomposition

EMD is a data-driven method that decomposes a given
time series into the IMFs. The intuitive idea of EMD is to
decompose data through a shifting process. For any given data
{x(t)}, it can be decomposed into the IMFs {c j (t)} and the
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Fig. 4. IMFs and residue obtained through EMD. (a) c1(t). (b) c2(t). (c) c3(t). (d) c4(t). (e) c5(t). (f) c6(t). (g) c7(t). (h) r7(t).

residual {rn(t)} as

x(t) =
n�

j=1

c j (t) + rn(t). (6)

The detailed steps of EMD are summarized in Algorithm 1.
Once the previous disease density data I(t) = [i(t),

i(t − 1), . . . , i(t − l)]T is collected, first, EMD is utilized to
obtain the IMFs and the residue

i(t) =
n�

j=1

c j (t) + rn(t). (7)

Then, the IMFs and residue are further processed by the
ensemble learning techniques.

C. LASSO-Based Ensemble Learning

LASSO is short for least absolute shrinkage and selection
operator [35]. The intuitive idea of LASSO is to minimize the
residual sum of squares, while the sum of the absolute value of
the coefficients is less than a constant. The details of LASSO
can be referred to the Appendix.

As shown in Fig. 2, in phase I, the disease density time
series data {i(t)} are processed by EMD to obtain the IMFs
{c j (t)} and the residue {rn(t)}. After decomposition, LASSO
is employed on these IMFs and the residue for ensemble
learning. Since there are n IMFs and 1 residue, n + 1 learning
methods are utilized for each component separately, and then,

ensemble learning techniques that use the self-query data as an
external input are applied to obtain the prediction of disease
density î(t + 1) at the next step.

In the training procedure, the inputs for learning method j
between 1 and n are the IMF component {c j (t)} and the
self-query data Q(t + 1). The inputs for learning method
n + 1 are the IMF residue {rn(t)} and the self-query data
Q(t + 1). The prediction output for each learning method
j is denoted by ŷ j (t + 1) here. For simplicity, LASSO
is assigned for all n + 1 learning methods. Therefore, for
LASSO j where j < n + 1, the input matrix x j can be
written as x j = [x j (t − m + 1), . . . , x j (t − 1), x j (t)]T ,
where x j (t) = [c j (t − l), . . . , c j (t − 1), c j (t), QT (t + 1)]T ,
while the output vector is ŷ j = [y j (t − m +
2), . . . , y j (t), y j (t + 1)]T . For LASSO n + 1, we have
xn+1(t) = [rn(t − l), . . . , rn(t − 1), rn(t), QT (t + 1)]T . m
denotes the window length for training and l denotes the AR
order of the time series. The sliding-window-based-on-line
learning scheme [27] is used to accommodate the time-varying
parameters in the proposed SEIS-A framework.

For each LASSO training problem, the objective function
for parameters (θ j ) estimation is

θ̂ j = arg min
1

2
�y j −φT (x j )θ j�2

2+λ�θ j�1, j = 1,. . ., n+1

(8)
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Fig. 5. IMFs and residue obtained through EEMD. (a) c1(t). (b) c2(t). (c) c3(t). (d) c4(t). (e) c5(t). (f) c6(t). (g) c7(t). (h) r7(t).

where φ are the basis functions and λ is the regularization
coefficient. � · �2 and � · �1 denote the L2-norm and L1-norm,
respectively.

After obtaining the parameters’ estimation θ j , the prediction
for each LASSO model can be obtained as

ŷ j = φT (x j )θ̂ j (9)

where ŷ j = [ŷ j (t − m + 2), . . . , ŷ j (t), ŷ j (t + 1)]T . Hence,
the disease density prediction î(t +1) can be obtained through
the following ensemble learning techniques:

î(t + 1) =
n+1�

j=1

ρ j ŷ j (t + 1) (10)

where ρ j denotes the aggregate coefficient.

IV. EMPIRICAL STUDY

In this section, a real disease spreading case is consid-
ered. HFMD is a common seasonal infectious disease among
children. Large outbreaks of HFMD have been occurring
in Asia since 1997. HFMD is popular in spring, summer,
and fall, and it can even cause death for severe victims.
Therefore, the prediction of HFMD spreading is of great
significance. In this section, the HFMD spreading data and
the Google search data in Hong Kong are utilized to validate
the effectiveness of the proposed method. The descriptions of
these data are presented in the following.

A. HFMD Data Description

The weekly consultation rates (per 1000 consultations) of
HFMD by General Out-Patient Clinics (GOPC) and General
Practitioners (GP) from week 1, 2010 to week 13, 2018 are
considered. The data are collected from the Hong Kong Cen-
ters for Health Protection (CHP) [36]. The weekly consultation
rates represent the disease spreading scale in the current week.

As it is presented in Fig. 3, the weekly consultation rate
reveals seasonal fluctuations, which indicates the seasonal
characteristic of HFMD. From week 1, 2010 to week 13,
2018, there are four major HFMD spreading seasons, and all
of them occur in summer months. Apart from the seasonal
characteristic, there exist numerous fluctuations, which makes
the prediction problem more difficult.

B. Mapping the SEIS-A Framework to Observations

To be noticed, the SEIS-A framework represents the disease
incidence on a per capita basis, or incidence rate, and includes
asymptomatic and mildly symptomatic infections. Due to the
unavailability of the actual disease density data I(t), only the
weekly consultation rate can be used for prediction. To address
this discordance, a scaling factor μ is used to map the SEIS-A
framework to the weekly consultation rate observation [37].
Denote δ as the rate of consultation individuals who are
infected and η(t) as the weekly consultation rate in week t .
By Bayes’ rule, the probability of an individual infected by
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Fig. 6. IMFs and residue obtained through CEEMD. (a) c1(t). (b) c2(t). (c) c3(t). (d) c4(t). (e) c5(t). (f) c6(t). (g) c7(t). (h) r7(t).

the disease during a given week, p(i), is

p(i) = p(m)

p(m|i) × p(i |m)

where

p(i |m) ≈ δ × η(t)

p(i |m) denotes the probability that an individual seeking
medical attention m is infected. Denoting μ = p(m)/p(m|i)
as the scaling factor, one has

i(t) = p(i) ≈ μδη(t). (11)

On the one hand, as shown in (11), the disease density i(t)
is associated with the observed weekly consultation rate, that
is, the increase in the weekly consultation rate can cause the
outbreak of the disease. On the other hand, the actual dis-
ease density data I(t) are unavailable. Therefore, the weekly
consultation rate is employed as the objective of prediction.
Then, the epidemic spreading prediction problem in (5) can be
converted into the weekly consultation rate prediction problem
as follows:
η(t + 1) = η(t) + (−G1(η(t))

· η(t) + G2(η(t)) · f −1(Q(t + 1)))�t

where η(t) = [η(t), η(t − 1), . . . , η(t − l)]T , G1(η(t)) =
g1(μδη(t)), and G2(η(t)) = g2(μδη(t))/αμδ.

According to the proposed methodology framework, first,
the weekly consultation data are processed through EMD to
obtain the IMFs and residue. The obtained IMFs and residue
are shown in Fig. 4, and the frequency of the data is decreasing
from c1(t) to c7(t). For each IMF and residue, an independent
LASSO model is assigned.

Moreover, two extensions of EMD, i.e., the ensemble
EMD (EEMD) and the complementary EEMD (CEEMD), are
also employed as the decomposition tools in the proposed
methodology framework. The decomposition results are pre-
sented in Figs. 5 and 6, respectively.

C. Google Search Data Description

In the proposed SEIS-A framework, one important feature
is that the self-query data Q(t) play a significant role in
the disease density prediction. Here, the search activities in
Google for keywords related to HFMD are considered. Due
to the unavailability of Google Correlate [27] in Hong Kong,
the keywords that are related to HFMD have to be chosen
carefully. Meanwhile, since Hong Kong is a city with mixed
cultures and languages, both traditional Chinese and English
are widely used, and keywords related to HFMD in both
languages should be considered to improve the prediction pre-
cision. The keywords selected for HFMD spreading prediction
are based on the previous results [24]–[26].
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Fig. 7. Keywords selected for HFMD prediction.

Fig. 8. ACF results of GOPC + GP from week 1, 2010 to week 13, 2018.

The normalized weekly search frequency data for the
16 keywords in Fig. 7 are collected from Google Trends [38].
The search frequency data are collected from week 1, 2010 to
week 13, 2018. Meanwhile, since the self-query data on
Google are one week earlier than the consultation data
announced by CHP, the disease density prediction can be
achieved by using the current self-query data on Google and
the previous consultation data.

Remark 1: To be noticed, the self-query data Q(t + 1) are
different from the weekly consultation rate data η(t). The
self-query data are collected by search engines on the Internet
like Google, and it records individuals’ search activities for
keywords related to a certain disease. However, the weekly
consultation rate data η(t) are directly related to the disease
density data I(t) as it is shown in (11). The weekly consul-
tation rate is employed as the prediction objective due to the
unavailability of the actual disease density data I(t), while the
self-query data Q(t + 1) are used as an external input of the
proposed method due to the timely access of it.

D. HFMD Spreading Prediction

First, the autocorrelation function (ACF) [39] is utilized to
obtain the model order of the weekly consultation rates. Based
on the ACF results in Fig. 8, the value of AR order l is chosen
as 30. Meanwhile, the length of the window m is selected as
300 in this empirical study.

Fig. 9. Prediction results of GOPC + GP from week 18, 2016 to week 13,
2018 based on the proposed framework. (a) EMD. (b) EEMD. (c) CEEMD.

Several common evaluation metrics are adapted to compare
the performance of different methods: the root mean square
error (RMSE), the mean absolute error (MAE), and the mean
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Fig. 10. Prediction results of GOPC+GP from week 18, 2016 to week 13, 2018 by other methods. (a) LASSO. (b) SVR. (c) RF. (d) EKF.

absolute percentage error (MAPE). Denote (ŷ1, ŷ2, . . . , ŷn) as
a series of the prediction values and (y1, y2, . . . , yn) as the real
values. Then, the above-mentioned metrics have the following
forms:

RMSE =
�

	n
j=1 (ŷ j − y j )

2

n

MAE = 1

n

�n

j=1
|ŷ j − y j |

MAPE = 1

n

�n

j=1










ŷ j − y j

y j








.

The prediction results of the proposed method using
EMD from week 18, 2016 to week 13, 2018 are pre-
sented in Fig. 9(a). During this period, there exist four
major outbreaks of HFMD. It is obvious that the proposed
method performs well in the disease spreading prediction
and all four major outbreaks are predicted with minor
errors.

To better illustrate the advantage of the proposed method,
three other learning methods, support vector regression (SVR),
random forest (RF), and extended Kalman filter (EKF), are
compared with the proposed method on the same time series,
and the results are presented in Fig. 10(b)–(d). Comparing
with Fig. 9(a), it is obvious that the proposed method has an
overall advantage over all these methods. In addition, the three
evaluation metrics, RMSE, MAE, and MAPE, are calculated
for better comparison in Table I. The LASSO without EMD
is also investigated, and it is found to be less effective than
the EMD-based LASSO.

Moreover, the prediction results of the proposed method
with EEMD and CEEMD are presented in Fig. 9(b) and (c),
respectively. Based on the value of the metrics in Table I,
it is found that the proposed method using EEMD or CEEMD
as the decomposition tool can obtain a better performance
than that using EMD. This is due to the inherent advan-
tages of EEMD and CEEMD over EMD in mode decom-
position. However, since the main contribution claimed in
this paper is to introduce an EMD-based ensemble learning
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TABLE I

COMPARISON OF DIFFERENT METHODS

framework for the epidemic spreading prediction problem
rather than solving the mode decomposition problem, EMD is
used as the decomposition tool in the proposed methodology
framework.

Remark 2: The reasons for using EMD as the decomposi-
tion tool are twofold. First, EMD is the most classical method
for such a mode decomposition problem. Second, it has not
been used on the epidemic spreading prediction problem to
the best of our knowledge. On the one hand, although using
the EEMD or CEEMD method as the decomposition tool can
further improve the prediction performance, it may still be
improved by the state-of-the-art EMD extensions. On the other
hand, the proposed method using EMD as the decomposition
tool already performs better over all the methods without mode
decomposition. Based on the above-mentioned considerations,
EMD is used as the decomposition tool in the proposed
method.

V. CONCLUSION

In this paper, a unified SEIS-A framework is proposed
to combine individuals’ self-query behaviors on the Internet
with the epidemic spreading process. An epidemic spread-
ing prediction method that combines EMD with ensemble
learning techniques is established based on the proposed
SEIS-A framework. An empirical study on the prediction of
weekly consultation rates of HFMD in Hong Kong based
on the self-query data on Google is conducted. The results
indicate that the proposed method outperforms other learning
methods. The future direction may be the combination of
epidemic spreading over complex networks with evolutionary
computation [40]–[43].

APPENDIX

A. Introduction to LASSO

The objective function for parameters (θ) estimation of
LASSO is

θ̂ = arg min
1

2
�y − φT (x)θ�2

2 + λ�θ�1 (12)

where x and y denote the predictor variables and the
responses, respectively. Here, φ are the basis functions and
λ is the regularization coefficient. � · �2 and � · �1 denote the

L2-norm and L1-norm, respectively. In order to optimize the
objective function, the parameters θ can be formulated as a
difference between two vectors with positive entries

θ = θ+ − θ−

s.t. θ+ � 0, θ− � 0.

Hence, the objective function can be regenerated as

θ̂ = arg min
θ+,θ−

1

2
�y − φT (x)(θ+ − θ−)�2

2 + λ�(θ+ − θ−)�1

s.t. θ+ � 0, θ− � 0. (13)

Define X = [ θ+
θ− ], and then, the objective function can be fur-

ther simplified to the compact form of quadratic programming

min
1

2
XT H X + cT X (14)

where

H =
�

φ(x)φT (x) −φ(x)φT (x)

−φ(x)φT (x) φ(x)φT (x)

�

, c = λ1 −
�

φ(x)y
−φ(x)y

�

.

Here, 1 is the column vector of one. The parameters θ

can be obtained by solving this optimization problem. The
main advantage of LASSO is that some parameters of trivial
features shrink to zero by the L1-norm, and hence, the model
complexity can be reduced.
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