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Abstract—Constrained multiobjective optimization problems
(CMOPs) involve both conflicting objective functions and var-
ious constraints. Due to the presence of constraints, CMOPs’
Pareto-optimal solutions are very likely lying on constraint
boundaries. The experience from the constrained single-objective
optimization has shown that to quickly obtain such an optimal
solution, the search should surround the boundary of the fea-
sible region from both the feasible and infeasible sides. In this
article, we extend this idea to cope with CMOPs and, accord-
ingly, we propose a novel constrained multiobjective evolutionary
algorithm with bidirectional coevolution, called BiCo. BiCo main-
tains two populations, that is: 1) the main population and
2) the archive population. To update the main population, the
constraint-domination principle is equipped with an NSGA-II
variant to move the population into the feasible region and then
to guide the population toward the Pareto front (PF) from the
feasible side of the search space. While for updating the archive
population, a nondominated sorting procedure and an angle-
based selection scheme are conducted in sequence to drive the
population toward the PF within the infeasible region while main-
taining good diversity. As a result, BiCo can get close to the PF
from two complementary directions. In addition, to coordinate
the interaction between the main and archive populations, in
BiCo, a restricted mating selection mechanism is developed to
choose appropriate mating parents. Comprehensive experiments
have been conducted on three sets of CMOP benchmark functions
and six real-world CMOPs. The experimental results suggest that
BiCo can obtain quite competitive performance in comparison
to eight state-of-the-art-constrained multiobjective evolutionary
optimizers.
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I. INTRODUCTION

CONSTRAINED multiobjective optimization problems
(CMOPs) are frequently encountered in diverse science

and engineering disciplines [1]–[3], which involve both con-
flicting objective functions and various constraints. Without
loss of generality, a CMOP can be defined as

min F(x) = (f1(x), f2(x), . . . , fm(x))T
R

m

s.t. gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q+ 1, . . . , �

x = (x1, x2, . . . , xn)
T ∈ R

n (1)

where x refers to an n-dimensional decision vector, R
n denotes

the decision space, F(x) constitutes m real-valued conflict-
ing objective functions,1 R

m represents the objective space,
fi(x) is the ith objective function, and gj(x) and hj(x) are the
jth inequality constraint and the (j − q)th equality constraint,
respectively.

In constrained evolutionary optimization, the degree of
constraint violation on the jth constraint for x is calculated as

cj(x) =
{

max
(
0, gj(x)

)
, if j ≤ q

max
(
0, |hj(x)| − ε

)
, otherwise

(2)

where ε is a very small positive value (e.g., ε = 10−4) to
relax the equality constraints. For the degree of constraint vio-
lation on all constraints (i.e., overall constraint violations), it
is usually computed as

CV(x) =
�∑

j=1

cj(x). (3)

x is feasible if it satisfies CV(x) = 0; otherwise, x is infea-
sible. Then, the feasible space F can be defined as F = {x ∈
R

n|CV(x) = 0}. Suppose two decision vectors xu, xv ∈ F,
if ∀i ∈ {1, 2, . . . , m}, fi(xu) ≤ fi(xv) and ∃i ∈ {1, 2, . . . , m},
fi(xu) < fi(xv), then xu is said to Pareto dominate xv, denoted
as xu ≺ xv. A solution xu ∈ F is called a Pareto-optimal
solution if and only if ¬∃xv ∈ F, xv ≺ xu. The set of all
Pareto-optimal solutions is called the Pareto set (PS), and
the image of PS in the objective space is called the Pareto
front (PF): PF = {F(xu)|xu ∈ PS}. The ultimate goal of the

1At least two of them are conflicting with each other.
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Fig. 1. Illustration of the effects of the constraints.

constrained multiobjective optimization is to obtain a set of
well-distributed Pareto-optimal solutions.

However, it is not an easy task to achieve that goal, espe-
cially because of the existence of constraints. Specifically, the
constraints can divide the entire search space into a series of
feasible and infeasible regions; thus, the Pareto-optimal solu-
tions may be scattered in several feasible regions. Under this
condition, it would be challenging to discover these feasi-
ble regions in a single run since these feasible regions might
be very narrow and/or disparately distributed in the search
space. Besides, the constraints can make the PF totally dif-
ferent from the unconstrained PF, in terms of both the shape
and the location. In this case, the Pareto-optimal solutions are
very likely located on constraint boundaries [4]–[7], which are
not so easy to attain. To make a clear explanation about the
effects of the constraints, an example is presented in Fig. 1. As
shown in Fig. 1, feasible regions A, B, and C are enclosed by
the constraint boundaries and they are scattered in the search
space. The Pareto-optimal solutions are simultaneously dis-
tributed in some constraint boundaries of B and C. Obviously,
it would face great challenges for a CMOEA to approach all
these constraint boundaries and to obtain a well-distributed
approximation of the entire PF during only one run [8]–[12].

Indeed, to address a CMOP, a straightforward way is first to
move the population into the feasible region, then to drive the
population toward the PF within the feasible region. However,
this method may bring about the following two issues.

1) It can lead to the population being stuck at some locally
feasible regions (e.g., feasible region A in Fig. 1) or
local optimal feasible regions (e.g., only feasible region
B or C in Fig. 1).

2) In addition, the driving force may be limited since the
population only evolves from the feasible side of the
search space. Thus, this method is unable to push the
population toward the PF promptly.

To alleviate the first issue, many researchers have claimed
that the information of infeasible solutions should be uti-
lized since this kind of information can help to maintain the
diversity of the search and find as many feasible regions as
possible. Along this line, some researchers try to take CV as
an additional objective function [7], [13] and transform the
original m-objective CMOP into an unconstrained (m + 1)-
objective multiobjective optimization problem (MOP). Note
that the transformed MOP can be conveniently addressed by

the current MOEAs; thus, the population can search with good
diversity in this (m+ 1)-dimensional objective space. Another
way is to ignore the constraints and only take the objective
functions into account, with the aim of providing as many
diversified solutions as possible [14]. To remedy the second
issue, according to the knowledge from constrained single-
objective optimization, the potential infeasible solutions near
the constraint boundaries should be retained, since they can
provide an advantage to quickly search for the optimal solution
by surrounding the boundary of the feasible region from both
the feasible and infeasible sides [15]. Unfortunately, few cur-
rent CMOEAs can obtain such infeasible solutions and make
use of them appropriately. In summary, to design an efficient
CMOEA: 1) aside from the search in the feasible regions, the
search in the infeasible regions should also be carefully con-
sidered, which should not only maintain good diversity but
also surround the constraint boundaries and 2) the coopera-
tion between these two different kinds of searches should be
taken into account, aiming at improving search efficiency.

Following these ideas, in this article, we propose a novel
CMOEA with bidirectional coevolution, denoted as BiCo,
for properly addressing CMOPs. BiCo can conveniently coe-
volve the solutions toward the PF from both the feasible and
infeasible sides of the search space. Specifically, BiCo main-
tains two populations—the main population and the archive
population—which are the main driving forces toward the
PF within the feasible and infeasible regions, respectively. To
update the main population, we first employ the constraint-
domination principle (CDP) to drive the population into the
feasible region, then utilize an NSGA-II variant to guide the
population toward the PF from the feasible side of the search
space. To update the archive population, we first tend to
find these potential infeasible solutions, in other words, the
nondominated infeasible solutions by regarding CV as an addi-
tional objective function. Afterward, a brand-new angle-based
selection scheme is devised to update these infeasible solu-
tions, which can move the population toward the PF in good
diversity within the infeasible region. In addition, to coordinate
the searches in the main and archive populations, a restricted
mating selection mechanism is developed to select appropriate
mating parents.

The main contributions of this article are listed as follows.
1) This article makes an attempt to solve CMOPs via bidi-

rectional coevolution, and accordingly, a novel CMOEA,
called BiCo, has been proposed. By coevolving two
populations (i.e., the main population and the archive
population), BiCo can conveniently and effectively drive
the solutions toward the PF from both the feasible and
infeasible sides of the search space, which is of essential
importance in constrained multiobjective optimization.

2) A novel angle-based selection scheme is designed to
update the archive population. This scheme can not only
maintain the diversity of the search, facilitating the dis-
covering of more feasible regions; but can also retain
the infeasible solutions close to the PF, speeding up the
search for the Pareto-optimal solutions.

3) To coordinate the interactions between the main and
archive populations and make use of the complementary
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information of them, a brand-new restricted mating
selection mechanism is developed in this article.

4) Systemic experiments have been conducted on three sets
of CMOP benchmark functions (e.g., MW [5], CTP [4],
and LIR-CMOP [16]) and six real-world CMOPs to vali-
date the effectiveness of BiCo. The empirical results sug-
gest that BiCo can obtain quite competitive performance
in comparison to eight peer CMOEAs in terms of both
IGD [17] and HV [18]. Furthermore, the benefits of
some important algorithmic components in BiCo have
been verified.

The remainder of this article is organized as follows.
Section II provides a brief literature review of the current
CMOEAs. The details of BiCo are given in Section III. The
experimental setup is introduced in Section IV and the exper-
iments and discussions are carried out in Section V. Finally,
Section VI concludes this article.

II. LITERATURE REVIEW

The past two decades have witnessed a significant progress
in the development of EAs for CMOPs. Up to the present,
various CMOEAs have been proposed, and in this article, they
are roughly grouped into two categories: 1) the feasibility-
driven CMOEA and 2) the infeasibility-assisted CMOEA.

A. Feasibility-Driven CMOEA

As the name suggests, this category is mainly driven by
feasibility information, which always assigns a higher superi-
ority to feasible solutions than to infeasible ones. Under this
consideration, Coello Coello and Christiansen [19] proposed
a simple method for constrained multiobjective optimization.
In this method, only the feasible solutions are retained while
the infeasible solutions are neglected. However, this method
fails to distinguish solutions when all solutions are infeasi-
ble [14]. Thus, this method would be invalid for CMOPs with
a narrow feasible region. To increase the selection pressure,
Deb et al. [20] proposed the famous NSGA-II-CDP, which
incorporates the CDP into NSGA-II for environmental selec-
tion. The implementation of CDP is quite simple. Given two
solutions xu and xv, xu is said to constraint-dominate xv if:

1) both xu and xv are infeasible, and CV(xu) < CV(xv);
2) xu is feasible yet xv is infeasible;
3) both xu and xv are feasible, and xu ≺ xv.

Clearly, CDP has the capability to motivate the popula-
tion to approach or enter the feasible region very quickly.
Due to its simplicity and efficiency, at present, CDP has
already been embedded into various MOEAs (i.e., AnD [21],
NSGA-III [22], and MOEA/D [23]) and search engines
(i.e., particle swarm optimization [24] and differential evo-
lution [25]) for constrained multiobjective optimization.

Similar to Deb et al. [20], Jiménez et al. [26] proposed
a novel CMOEA, called ENORA. In ENORA, a min-max
formulation-based evaluation function is employed to evolve
the infeasible solutions toward the feasible ones. Afterward, a
Pareto-based MOEA is applied to drive the feasible solutions
toward the PF. Recently, Miyakawa et al. [27] proposed a two-
stage nondominated sorting for addressing CMOPs. The main

novelty of this work lies in its two-stage nondominated sorting:
1) first, the degree of constraint violation on each constraint
is considered as an objective function and the nondominated
sorting is implemented to sort all solutions according to their
constraint violation values and, thereafter, 2) the solutions in
each obtained front after the first stage are reclassified by non-
dominated sorting according to their objective function values.
Miyakawa et al. [27] claimed that the usage of this two-stage
nondominated sorting leads to finding feasible solutions hav-
ing better objective functions. Very recently, Liu and Wang [6]
proposed a two-phase framework, called ToP, to cope with
CMOPs with complex constraints. The uniqueness of ToP lies
in its first phase, in which a CMOP is transformed into a con-
strained single-objective optimization problem by making use
of the weighted sum approach. To address this transformed
problem, the feasibility rule is employed to handle the con-
straints [28]. Note that the feasibility rule is a well-known
feasibility-driven constraint-handling technique (CHT) in the
constrained optimization community [17], [29].

B. Infeasibility-Assisted CMOEA

This category is assisted by infeasibility information, in
which some infeasible solutions are also preferred rather
than only the feasible ones since the potential information
of these infeasible solutions can also benefit the evolution-
ary search. One representative in this category is IDEA [7],
in which a small percentage of infeasible solutions are explic-
itly maintained during the entire evolution. To update these
infeasible solutions, IDEA first transforms the original m-
objective CMOP into an unconstrained (m + 1)-objective
MOP by taking the overall constraint violations as an addi-
tional objective function. Afterward, nondominated sorting and
crowding distance sorting are conducted to rank these infea-
sible solutions of m + 1 objective functions regarding the
transformed problem. Analogously, Peng et al. [13] proposed
a novel evolutionary algorithm with directed weights for con-
strained multiobjective optimization. This method also regards
the overall constraint violations as an additional objective
function, but uses two types of weights—feasible weights and
infeasible ones—to guide the search toward the promising
regions. Note that these infeasible weights are dynamically
changed along with the evolution to prefer infeasible solutions
with better objective values and smaller constraint viola-
tions. Oyama et al. [30] proposed a new CMOEA based
on the Pareto-optimality and niching concepts, in which the
current population is separated into the feasible and infea-
sible subpopulations according to the solutions’ degree of
constraint violations. Similarly, in the CMOEA proposed by
Sorkhabi et al. [31], the population is also divided into a fea-
sible subpopulation and an infeasible one, which are evolved
in a parallel manner.

By modifying the objective functions with the constraints,
some potential infeasible solutions can also be reserved.
Woldesenbet et al. [32] proposed an adaptive penalty func-
tion, which is in coupled with a distance measure to search
for the Pareto-optimal solutions in the feasible regions and
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to exploit the important information provided by the infeasi-
ble solutions with better objective function values and lower
constraint violation values. Jan and Zhang [33] introduced a
penalty function that penalizes infeasible solutions based on
an adaptive threshold value into the framework of MOEA/D
for addressing CMOPs. Jiao et al. [34] proposed a novel
CMOEA by combining a modified objective function method
with a feasible-guiding strategy, which can lead to dominance
checking and repair of the infeasible solutions, respectively.
By blending a solution’s rank in the objective space with its
rank in the constrained space, Young [35] proposed a novel
CMOEA that can cross the infeasible regions and find the
true PF. Similarly, Ning et al. [36] incorporated a constrained
nondominated rank into an improved version of MOEA/D-
M2M [37] for addressing CMOPs. Note that the assignment
of a solution’s nondominated rank is based on its constraint
violations and its Pareto rank at the same time. With the
utilization of the ε-constrained method, the constraint bound-
ary can be relaxed to a certain degree, then some infeasible
solutions can also survive. The ε-constrained method was
extended into the framework of MOEA/D [38] for dealing
with CMOPs [39], [40]. As for the ε value, it is adaptively
adjusted to achieve superior performance. Besides, the ε-
constrained method was also integrated in ECHM [41], in
which an ensemble of CHTs are used rather than a single
one to tackle CMOPs. Note that for each CHT, in ECHM, a
different population is associated with it.

Recently, a two-archive evolutionary algorithm (C-TAEA)
was proposed for constrained multiobjective optimization by
Li et al. [14]. C-TAEA simultaneously maintains two collabo-
rative archives: 1) the convergence-oriented archive (CA) and
2) the diversity-oriented archive (DA), aiming to drive the
population toward the PF and maintain the diversity of the
population, respectively. Also, Fan et al. embedded a CHT,
called angle-based-constrained dominance principle (ACDP),
into MOEA/D for tackling CMOPs [42]. In ACDP, the angle
information among all solutions and the proportion of the fea-
sible solutions are used to adjust the dominance relationship.
Very recently, Fan et al. [43] incorporated a push-and-pull
search (PPS) framework into a constrained MOEA/D for cop-
ing with CMOPs. PPS consists of two stages: 1) the push stage
and 2) the pull stage. In the push stage, only the objective
functions are considered, with the aim of crossing the infeasi-
ble regions in front of the unconstrained PF. In the pull stage,
both the objective functions and the constraints are considered,
and an improved ε CHT is implemented to pull the solutions
obtained in the push stage toward the true PF. It is worth
noting that Fan et al. also applied PPS to a multiobjective
to multiobjective (M2M) decomposition approach and then
proposed a very efficient CMOEA, that is, PPS-M2M in [44].

Our work in this article falls into the second category.
Moreover, the feasible solutions and the infeasible ones are
coevolved to search for the Pareto-optimal solutions.

III. PROPOSED ALGORITHM

A. BiCo

This article tries to solve CMOPs via bidirectional coevo-
lution, and accordingly, a novel CMOEA, called BiCo, is

Fig. 2. System architecture of BiCo.

proposed. The motivation behind BiCo comes from the fol-
lowing three aspects.

1) Although it is quite necessary to evolve the solutions
toward the PF from two complementary directions, that
is, from the feasible and infeasible sides of the search
space, few current CMOEAs can effectively accomplish
this task. For feasibility-driven CMOEAs, they focus
mainly on feasible solutions, thus they can only move
the solutions toward the PF from the feasible side of the
search space. As for most current infeasibility-assisted
CMOEAs, they keep both feasible and infeasible solu-
tions during the evolution. Note, however, that these
infeasible solutions are mainly employed to maintain
the diversity of the search (see Section I) and they
lose the capability to offer an effective driving force
toward the PF from the infeasible side of the search
space.

2) It is indeed the fact that the infeasible solutions are
expected to be close to the constraint boundaries, where
the Pareto-optimal solutions locate while maintaining
good diversity. Nevertheless, to the best of our knowl-
edge, almost no current CMOEAs can obtain such
infeasible solutions effectively.

3) Besides the searches from the feasible and infeasible
sides of the search space, the interaction between them
is also very important. Unfortunately, up to now, there
is still not much research focusing on this issue.

BiCo aims to address the previous three issues. As presented
in Fig. 2,2 BiCo maintains two populations: 1) the main
population and 2) the archive population, which are updated
according to different strategies and they are employed to pro-
vide evolutionary forces toward the PF from the feasible and
infeasible sides of the search space, respectively. In terms of
how to obtain such infeasible solutions around the PF and with
good diversity as well, in BiCo, a novel angle-based selec-
tion scheme is designed to update the archive population. For

2The painting of this figure borrows the ideas of Fig. 2 in [45].
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Algorithm 1 Framework of BiCo
Input: a CMOP and the population size N
Output: Pt+1

1: Initialize t = 0, main population P0 = {x1, x2, . . . , xN},
and archive population A0 = ∅;

2: while the stopping criterion is not met do
3: Implement the restricted mating selection to select the

mating parents P from Pt and At;
4: Implement the genetic operations to produce the off-

spring Qt from P;
5: Update Pt+1 from Pt and Qt by making use of an

NSGA-II-CDP variant;
6: Implement the nondominated sorting procedure to dis-

cover the nondominated infeasible solutions (i.e., Vt) in
the union of Pt, At and Qt.

7: Update At+1 from Vt by using an angle-based selection
scheme;

8: t = t + 1;
9: end while

coordinating the interaction between the main and archive pop-
ulations, a restricted mating selection is developed to generate
promising offspring.

Algorithm 1 demonstrates the main framework of BiCo.
In the initialization process, the main population P0 = {x1,

x2, . . . , xN} is randomly sampled from the search space, and
the archive population A0 is initialized to be empty. During the
search process, a restricted mating selection and some genetic
operations are conducted in sequence to produce the offspring
Qt. Afterward, an NSGA-II-CDP variant is executed to update
the main population Pt+1. Finally, a nondominated sorting pro-
cedure and an angle-based selection scheme are executed to
update the archive population At+1. In brief, BiCo contains
three key components: 1) the updating of Pt; 2) the updating
of At; and 3) the generation of Qt.

B. Updating of the Main Population

The main population is the main driving force toward the PF
from the feasible side of the search space. To update the main
population, in BiCo, an NSGA-II-CDP variant is implemented
by borrowing the ideas from CDP and NSGA-II. CDP, as intro-
duced in Section II-A, prefers feasible solutions to infeasible
ones, while for the two infeasible solutions, it prefers the one
with smaller constraint violations. As a result, CDP can push
the population toward the feasible region promptly. As for
NSGA-II, it is one of the most famous MOEAs in the past
two decades. In NSGA-II, a nondominated sort is implemented
to divide the entire population into several nondomination
levels (i.e., F1,F2, . . . ,Fk). For the last desired level Fl,3

the crowding distance sort is conducted to delete unpromis-
ing solutions [20]. In general, with the combination of CDP
and NSGA-II, NSGA-II-CDP is expected to quickly move the

3Note that
∑l−1

i=1 |Fi| < N <
∑l

i=1 |Fi|, Fi denotes the ith nondomination
level and N is the population size.

Algorithm 2 Updating of the Main Population
Input: Pt and Qt

Output: Pt+1
1: Ut = Pt ∪Qt

2: Divide Ut into the feasible solution set S1 = {ui ∈
Ut|CV(ui) = 0} and the infeasible solution set S2 = {ui ∈
Ut|CV(ui) > 0};

3: if ‖S1‖ ≥ N then
4: Partition S1 into several PFs denoted as F1, . . . ,Fk by

applying the nondominated sorting;
5: Pt+1 = ∅ and i = 1;
6: while ‖Pt+1‖ + ‖Fi‖ ≤ N do
7: Pt+1 ← Pt+1 ∪ Fi;
8: i← i+ 1;
9: end while

10: while ‖Pt+1‖ + ‖Fi‖ > N do
11: Calculate the crowding distances in Fi and delete the

solution with the smallest crowding distance from Fi;
12: end while
13: Pt+1 ← Pt+1 ∪ Fi;
14: else
15: Pt+1 ← S1;
16: Sort solutions in S2 in ascending order according to CV

and place the top (N − ‖S1‖) best solutions into Pt+1;
17: end if

population toward the feasible region, and then guide the pop-
ulation toward the PF within the feasible region. The detailed
implementation procedures are presented in Algorithm 2.

From Algorithm 2, it is observed that the NSGA-II-CDP
variant used here is slightly different from the original one.

1) First, the crowding distance used here is defined as
the minimum Euclidean distance between one solution
and the other solutions in Fl regarding the objective
space (line 11). Suppose several solutions share the
same crowding distance, the second minimum Euclidean
distance will be considered, and so on.

2) Furthermore, the solutions in the last desired level Fl

herein are deleted one by one. This is quite differ-
ent from the original NSGA-II-CDP but similar to
SPEA2 [46] and HypE [47]. That means each time, only
the solution with the smallest crowding distance (lines
10-12) will be discarded and then the remaining solu-
tions’ crowding distances will be re-evaluated. This way,
as claimed in [47], can bring better results.

C. Updating of the Archive Population

Unlike the main population, the archive population is the
primary driving force toward the PF from the infeasible side
of the search space. Algorithm 3 describes how BiCo updates
the archive population. In general, it involves two essential
elements.

1) Discovery of the Nondominated Infeasible Solutions:
In the community of constrained evolutionary optimization,
nondominated infeasible solutions are always regarded as
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Algorithm 3 Updating of the Archive Population
Input: Pt, At, and Qt

Output: At+1
1: Ut = Pt ∪At ∪Qt;
2: Find the nondominated solutions in Ut by regarding CV

as an additional objective function, and select out the
infeasible nondominated solutions (i.e., Vt);

3: while ‖Vt‖ > N do
4: Find the two solutions (denoted as ui and uj) with the

smallest vector angle (i.e., θui,uj ) in Vt;
5: if CV(uj) < CV(ui) then
6: Vt ← Vt\ui; // delete ui

7: else
8: Vt ← Vt\uj; // delete uj

9: end if
10: end while
11: At+1 ← Vt;

promising ones [48]. Herein, the following steps are conducted
to obtain these nondominated infeasible solutions.

1) Take CV in (3) as an additional objective function and
transform the original CMOP in (1) into an uncon-
strained (m+1)-objective MOP

min F(x) = (f1(x), f2(x), . . . , fm(x), CV(x))T . (4)

2) Implement a nondominated sorting procedure to dis-
cover the nondominated solutions in the union of Pt,
At, and Qt, in terms of (4).

3) Pick out the infeasible ones from the obtained nondom-
inated solutions.

The finally obtained solutions (i.e., Vt) are the desired ones.
Remark 1: The main population Pt is employed in the

previous procedures, and this is quite necessary since the fea-
sible solutions in Pt can provide very important information
to identify the quality of the infeasible solutions. For ease of
understanding, an example is presented in Fig. 3. Suppose A
and B are feasible solutions in Pt, while C, D, E, F, G, and
H are infeasible ones in the union of At and Qt. Due to the
existence of A and B, solutions C, D, and E would become
the dominated infeasible solutions, which are obviously not
desired and should be discarded. However, without the help
of A and B, infeasible solutions C, D, and E might be retained
in the archive population since they are quite close to the con-
straint boundaries (but are far away from the PF) and F, G,
and H cannot dominate them as well.

2) Angle-Based Selection: If the size of Vt is larger than the
archive size N, then some redundant solutions in Vt need to be
discarded. To achieve that goal, in our study, an angle-based
selection scheme is developed by making use of the merits of
the vector angle [21], [42].

Herein, the vector angle refers to the angle between two
solutions in the normalized objective space (without consid-
ering the constraints). To calculate the vector angle, it has
to find the ideal point Zmin = (zmin

1 , zmin
2 , . . . , zmin

m ) and esti-
mate the nadir point Zmax = (zmax

1 , zmax
2 , . . . , zmax

m ), where zmin
i

and zmax
i denote the minimum and maximum values of the ith

objective for all solutions in Vt, respectively. Subsequently,

Fig. 3. Illustration of the feasible solutions’ effects in the discovery of
the nondominated infeasible solutions. Due to the existence of the feasible
solutions A and B, the infeasible solutions C, D, and E become dominated
infeasible solutions. While for the infeasible solutions F, G, and H, they are
nondominated infeasible solutions. Obviously, the nondominated infeasible
solutions are more promising than the dominated infeasible solutions.

Fig. 4. Illustration of the vector angle in CMOP with two objective functions.

the jth solution’s objective vector F(vj) can be normalized as
F′(vj) = (f ′1(vj), f ′2(vj), . . . , f ′m(vj)) according to

f ′i
(
vj

) = zmax
i − fi

(
vj

)
zmax

i − zmin
i

, i = 1, 2, . . . , m. (5)

Thereafter, the vector angle between two solutions vj and vk

(referred as θvj,vk ) can be computed as

θvj,vk = arccos

∣∣∣∣∣
F′

(
vj

) • F′(vk)∥∥F′
(
vj

)∥∥ · ‖F′(vk)‖

∣∣∣∣∣ (6)

where F′(vj) •F′(vk) returns the inner product between F′(vj)

and F′(vk), and ‖ · ‖ calculates the norm of the vector. In
general, the vector angle has a promising property, that is it
can reflect the similarities of the search directions between
two solutions to some extent. For two solutions searching from
very different directions, the vector angle between them would
be large; otherwise, the vector angle between them would be
relatively small. An example is presented in Fig. 4. Suppose
A, B, C, and D are nondominated infeasible solutions in Vt.
It can be seen that A and D search from different directions;
thus, θA,D is quite large, while B and C share similar search
directions. Hence, θB,C is relatively small.

In our proposed angle-based selection scheme, a “diversity
first and feasibility second” mechanism is developed to delete
the poor solutions in Vt one by one. Its implementation is quite
simple. Specifically, it first identifies two solutions in Vt with
the minimum vector angle. To maintain the search for diversity,
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(a) (b)

(c) (d)

Fig. 5. Illustration of the working principles of four different kinds of CHTs.
There are six solutions in the population, that is, A, B, C, D, E, and F. The
task is to select three solutions from the population into the next generation.
(a) Feasibility-driven CHT. (b) Constraints ignoring CHT. (c) Multiobjective-
based CHT. (d) Angle-based selection.

TABLE I
INFORMATION OF THE INFEASIBLE SOLUTIONS

intuitively, it is necessary to delete one of them since they search
in the most similar directions. To make the deletion wiser, the
feasibility information of these two solutions is considered, and
the one with the larger value of CV is discarded. These two steps
will continue until the size of Vt is no more than N. In general,
by repeatedly deleting one of two infeasible solutions with
the most similar search directions in the remaining population,
the diversity of the finally obtained population will be well
maintained. Note that in the deletion process, the feasibility
information of the solutions is considered, which is beneficial to
keep these infeasible solutions near the constraint boundaries.
As discussed in Section I, the Pareto-optimal solutions are
very likely located on constraint boundaries. As a result, the
finally obtained infeasible solutions can not only maintain good
diversity but are also close to the PF.

An example is presented in Fig. 5 to further explain the dif-
ference between our angle-based selection and the other three
representative CHTs: 1) feasibility-driven CHT [20], [21];
2) constraints ignoring CHT [14], [43]; and 3) multiobjective-
based CHT [7], [13]. In Fig. 5, A, B, C, D, E, and F are six
nondominated infeasible solutions in terms of (4), and their
detailed information is given in Table I. Our task is to select
three promising infeasible solutions into the next generation.
Fig. 5 depicts what happens to these four compared CHTs.

1) In feasibility-driven CHT, the infeasible solutions with
smaller constraint violations are preferred. From Table I,

it is observed that A, B, and C have the smaller CV;
thus, they will be selected into the next generation [see
Fig. 5(a)].

2) With respect to the constraints ignoring CHT, the con-
straints are neglected and only the objective functions
are considered. Under this condition, the nondomi-
nated solutions in terms of the objective functions are
preferred. From Fig. 5(b), it is clear that A, D, and F
are such kind of solutions and they will survive into the
next generation.

3) For multiobjective-based CHT, CV is regarded as an
additional objective function, and the original CMOP
is transformed into an unconstrained (m + 1)-objective
MOP. To solve this transformed problem, NSGA-II is
supposed to be applied. Since A, B, C, D, E, and F
are nondominated infeasible solutions, they cannot be
distinguished by the nondominated sorting. In this sit-
uation, the crowding distance sort will work. Suppose
the crowding distance of one solution is defined as the
lth nearest Euclidian distance between this solution to
the other solutions, and the setting of l follows the ideas
in [18]. Then, l would be 3. Thereafter, we can cal-
culate the crowding distances of A, B, C, D, E, and
F, which are 1.2470, 0.9566, 0.7018, 1.0062, 1.0050,
and 0.8441, respectively. Obviously, A, D, and E have
relatively larger crowding distances. Thus, they will be
retained as shown in Fig. 5(c).

4) To implement the angle-based selection, first, we have to
compute the vector angles between any two solutions in
the entire population. Afterward, we need to find these
two solutions with the minimum vector angle and then
differentiate them based on their CV values. Clearly, C
and D share the minimum vector angle in the popula-
tion. Then, D is removed since it has a larger CV than
C. After D has been eliminated, A and B share the mini-
mum vector angle in the remaining population. Note that
CV(A) > CV(B), then B is discarded. Similarly, after
B has been deleted, E and F have the minimum angle
vector. Then, F will be deleted since CV(E) > CV(F).
In summary, B, D, and F will be eliminated, and A, C,
and E will be survive [see Fig. 5(d)].

From this discussion, we can observe that our proposed
method can obtain more suitable results compared with its
three competitors. For feasibility-driven CHT, it keeps A,
B, and C, which are quite close to the PF but are not
well distributed. In terms of constraints ignoring CHT and
multiobjective-based CHT, their finally obtained solutions can
indeed keep good diversity; nevertheless, some of them may be
far away from the PF. Note, however, that only in the proposed
angle-based selection, can the obtained solutions (i.e., A, C,
and E) be close to the constraint boundaries (where the PF
lies on) and in diverse search directions as well. Obviously,
this kind of infeasible solution is more desired.

D. Offspring Generation

Apart from the evolution of the main and archive popu-
lations, the interaction and collaboration between them are
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Algorithm 4 Restricted Mating Selection
Input: Pt and At

Output: Mating parents p1 and p2
1: if ‖At‖ < N then
2: Randomly select two solutions p1 and p2 from the union

population of Pt and At;
3: else
4: Randomly select two solutions x1 and a1 from Pt and

At, respectively;
5: if CV(x1) ≤ CV(a1) then
6: p1 ← x1;
7: else
8: p1 ← a1;
9: end if

10: Randomly select two solutions x2 and a2 from Pt and
At, respectively;

11: if AD(x2) ≤ AD(a2) then
12: p2 ← x2;
13: else
14: p2 ← a2;
15: end if
16: end if

also very important and should be considered carefully. To
this end, in BiCo, a restricted mating selection mechanism is
developed, which can leverage the complementary information
of these two populations for offspring generation. Algorithm 4
presents the detailed information. In general, it considers two
conditions.

1) If the size of archive population is less than N, the mat-
ing parents p1 and p2 are randomly selected from the
union of Pt and At.

2) Otherwise, p1 and p2 are selected based on CV and
angle-based density value (i.e., AD), respectively. To be
specific, to select p1, it first randomly selects two solu-
tions x1 and a1 from Pt and At, respectively; afterward,
their CV values are compared and the one with the
smaller CV is selected. To select p2, it also first ran-
domly chooses x2 and a2 from Pt and At, respectively;
thereafter, their AD values are compared and the one
with the larger AD is chosen.

CV can reflect the feasibility information of a solution and
has been introduced in (3). As for AD, it is designed to measure
the diversity of the search directions. To calculate the angle-
based density value AD(x) for the jth solution xj in Pt, the
following steps are implemented.

1) Find the ideal point Z
min = (zmin

1 , zmin
2 , . . . , zmin

m ) and
estimate the nadir point Z

max = (zmax
1 , zmax

2 , . . . , zmax
m ),

where zmin
i and zmax

i denote the minimum and maximum
values of the ith objective for all solutions in the joint
population of Pt and At, respectively.

2) Normalize the jth solution’s objective vector F(xj) as
F∗(xj) = (f ∗1 (xj), f ∗2 (xj), . . . , f ∗m(xj)) according to

f ∗i
(
xj

) = fi
(
xj

)− zmin
i

zmax
i − zmin

i

, i = 1, 2, . . . , m. (7)

Fig. 6. Simple illustration of the offspring generation. p1 and p2 are the
parents and q1 and q2 are the offsprings. In this scenario, it is observed that
q1 and q2 can inherit the elite information of their parents.

3) Compute the vector angles between xj and the other
solutions in Pt according to

θ ′xj,xk
= arccos

∣∣∣∣∣
F∗

(
xj

) • F∗(xk)∥∥F∗
(
xj

)∥∥ · ‖F∗(xk)‖

∣∣∣∣∣
xk ∈ Pt ∩ xk �= xj. (8)

4) Assign AD(xj) as the kth minimum value in the set of
{θ ′xj,xk

, xk ∈ Pt ∩ xk �= xj}, where k is set to
√

N fol-
lowing the similar idea in [46]. Note that N is the size
of Pt.

Clearly, a large AD value is desired for xj. Following the
previous steps, similarly, we can obtain the angle-based density
value AD(aj) of the jth solution aj in At.

After the selection of the mating parents, the popular simu-
lated binary crossover and polynomial mutation can be applied
to generate the offspring. By mating one solution with good a
CV value and one with good a AD value, it is expected that
the generated offspring can not only be close to the PF but
also with good diversity. As shown in Fig. 6, the generated
offspring q1 and q2 can inherit the elite information of p1
and p2, which are chosen based on CV and AD, respectively.
Other reproduction operators can also be conveniently applied
with a minor modification [14].

Remark 2: Compared with C-TAEA [14] and DPP [45],
BiCo adopts a unique restricted mating selection mecha-
nism. In DPP, to select two mating parents, it selects one
from the Pareto-based archive and the other one from the
decomposition-based archive. As in C-TAEA, it first combined
the CA and the DA together and then computed the propor-
tion of nondominated solution of CA and DA in the union
population, which are denoted as ρc and ρd, respectively. If
ρc is larger than ρd, the first parent is chosen from CA; oth-
erwise, from DA. If ρc is larger than a randomly generated
number between 0 and 1, the second parent is chosen from
CA; otherwise, from DA. Note that in the process of choos-
ing a mating parent from CA (or DA), a binary tournament
selection is conducted in C-TAEA by making use of CDP.
While in BiCo, as shown in lines 4–15 of Algorithm 4, to
select the first parent, it first randomly selects one solution
from the main population and the other one from the achieved
population. Thereafter, the CV value is employed to differen-
tiate these two selected solutions and the one with a better
CV value will be chosen. To select the second parent, similar
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procedures are conducted but the AD value rather than the CV
value is used to distinguish the two solutions and choose the
better one. It is apparent that the restricting mating selection
mechanism in BiCo is completely different.

E. Discussion

In general, BiCo involves a few parameters and no compli-
cated operators. Regarding the computational time complexity
of BiCo, it is indeed acceptable and has been analyzed in
Section S-I-A of the supplementary file. Also, in Section S-I-B
of the supplementary file, we have investigated the difference
between BiCo and several peer CMOEAs, that is, ECHM [41],
PPS [43], and C-TAEA [14].

IV. EXPERIMENTAL SETUP

A. Test Instances and Performance Metrics

In this article, all experiments were conducted on three
sets of CMOP benchmark functions (e.g., MW [5], CTP [4],
and LIR-CMOP [40]) and six real-world CMOPs. MW is a
recently proposed test suite that covers diverse characteristics
extracting from real-world CMOPs. By taking the relationship
between the unconstrained and constrained PFs into account,
these 14 CMOPs in MW can be classified into four types.

1) Type I—-the constrained PF is the same with the
unconstrained PF, that is, MW2, MW4, and MW14.

2) Type II—-the constrained PF is a part of the uncon-
strained PF, that is, MW1, MW5, MW6, and MW8.

3) Type III—-the constrained PF consists of a part of
the unconstrained PF and a part of the boundary of
the feasible region, that is, MW3, MW7, MW10, and
MW13.

4) Type IV—-the unconstrained PF is all located outside
the feasible region, that is, MW9, MW11, and MW12.

CTP [4] might be the most famous CMOP test suite that
contains eight test functions. LIR-CMOP [40] comprises 12
CMOPs with two objective functions and two CMOPs with
three objective functions, and all of them are with large
infeasible regions. Note that in this article, the number of
decision variables in LIR-CMOP was set to 10. The six real-
world CMOPs are: 1) CONSTR [49]; 2) disc-brake design
(DBD) [50]; 3) OSY [51]; 4) SRN [52]; 5) TNK [53]; and
6) welded beam design (WBD) [50].

To assess the performance of different CMOEAs, two com-
monly used metrics: 1) IGD [17] and 2) HV [18], were
employed in our experiments. Specifically, the IGD and HV
integrated in the platform developed by Tian et al. [54] were
adopted in our study.

B. Algorithms for Comparison

For performance comparison, two well-known feasibility-
driven CMOEAs (i.e., NSGA-II-CDP [20] and A-NSGA-
III [22]) and six famous infeasibility-assisted CMOEAs (i.e.,
IDEA [7], SP [32], C-MOEA/DD [55], MOEA/D-ACDP [42],
PPS [43], and C-TAEA [14]) were under our considera-
tion. More detailed information about them can be found in
Section S-II of the supplementary file for interested readers.

C. Parameter Settings

1) Population Size: It was set to 100 for each algorithm on
each test function [5], [20].

2) Parameter Settings for Genetic Operators: According to
the suggestions in [20], for each algorithm, the crossover
and mutation probability were set to 1.0 and 1/n, respec-
tively, and the distribution indexes of both SBX and the
polynomial mutation were set to 20.

3) Number of Independent Runs and Termination
Condition: All algorithms were independently run
30 times on each test function. For LIR-CMOP, the
maximum number of function evaluations (FEs) was
set to 300 000 [40], while for the others, the maximum
number of FES was set to 60 000 [5].

4) Parameter Settings for Algorithms: The parameters of all
the compared algorithms were kept identical with their
original papers.

All experiments in this article were conducted on the
platform developed by Tian et al. [54].

V. RESULTS AND DISCUSSION

A. Comparison With Eight State-of-the-Art CMOEAs

First, we compare the performance of BiCo with that of
the eight peer CMOEAs in Section IV-B on the MW test
suite [5], CTP test suite [4], LIR-CMOP test suite [40],
and six real-world CMOPs in sequence. The results are
summarized in Table II and Tables S-II–S-VIII of the sup-
plementary file.4 In each table, Wilcoxon’s rank-sum test at
a 0.05 significance level was performed to test the statis-
tical significance of the experimental results between two
algorithms, and for convenience, “+,” “−,” and “≈” denote
that a peer CMOEA performs better than, worse than, and
similar to BiCo, respectively. At our first glance, BiCo can
achieve the best performance on most test instances with
respect to both IGD and HV. As for the other algorithms,
the infeasibility-assisted CMOEAs (IDEA, SP, C-MOEA/DD,
MOEA/D-ACDP, PPS, and C-TAEA) can obtain overall better
performance than the feasibility-driven ones (NSGA-II-CDP
and A-NSGA-III). To visualize the results, we plotted the final
populations resulting from the nine compared algorithms in
a typical run on four representative CMOPs in Fig. 7 and
Figs. S-1–S-3. Herein, a typical run denotes a run producing
the median IGD value among all runs. Next, we a give detailed
discussion.

1) MW Test Suite: From Tables II and S-II, it is observed
that BiCo exhibited the overall best performance in terms of
both IGD and HV. In general, BiCo obtained the best IGD
results on all test instances (except for MW10) as presented
in Table II, and achieved the best HV results on ten out of 14
test instances as demonstrated in Table S-II.

For CMOPs of Type-I and Type-II, their constrained PFs
are the same with and are parts of the unconstrained PFs,
respectively. That means these two types of CMOPs mainly
challenge an algorithm’s capability of maintaining the diversity

4Tables S-I–S-XXIII and Figs. S-1–S-4 are placed in the supplementary
file.
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TABLE II
COMPARISON RESULTS ON IGD METRIC (MEAN) FOR BICO AND THE OTHER EIGHT PEER ALGORITHMS ON MW TEST SUITE.

THE BEST AND SECOND-BEST AVERAGE IGD VALUES AMONG ALL ALGORITHMS ON EACH TEST FUNCTION

ARE HIGHLIGHTED IN GRAY AND LIGHT GRAY, RESPECTIVELY

Fig. 7. Scatter plots of the population obtained by BiCo and the eight peer
CMOEAs on MW14. (a) BiCo. (b) NSGA-II-CDP. (c) A-NSGA-III. (d) IDEA.
(e) SP. (f) C-MOEA/DD. (g) MOEA/D-ACDP. (h) PPS. (i) C-TAEA.

of the search, which can help to avoid the loss of some parts
of the PF. However, for NSGA-II-CDP, and A-NSGA-III, as
observed in Tables II and S-II, none of them could obtain any
best or second-best results on these two types of CMOPs. The
reason might be that these two algorithms are feasibility-driven
CMOEAs. As introduced in Section II, these feasibility-driven
CMOEAs always give priority to the satisfaction of the con-
straints, while ignoring the maintenance of the population’s
diversity, which is of essential importance for properly solving
these two types of CMOPs. In terms of IDEA and SP, the for-
mer could obtain an overall better performance than the latter.
Specifically, IDEA obtained the second-best IGD values on

MW5, and the second-best HV values on MW1 and MW5;
while SP could not obtain any best or second-best results.
The relatively poor performance of SP might be attributed
to its infeasible stage, in which the objective functions are
totally disregarded and only the constraints are considered
to compare the solutions [32]. With respect to C-MOEA/DD
and MOEA/D-ACDP, the former achieved the second-best HV
value on MW4, while the latter obtained the second-best IGD
value on MW8 and attained the best and second-best HV
values on MW4 and MW8, respectively. The slightly better
performance of MOEA/D-ACDP is not surprising, since, in
MOEA/D-ACDP, an additional archive is employed to update
the feasible solutions, which can help to obtain a denser repre-
sentation of solutions than C-MOEA/DD [42]. Regarding PPS
and C-TAEA, the latter outperformed the former in most cases.
PPS failed to obtain any best or second-best results, while
C-TAEA gained the second-best IGD and HV values on MW2,
MW14, MW1, and MW6, and on MW2, MW14, and MW6,
respectively. This phenomenon implies the merits of maintain-
ing two populations. Interestingly, the latter four algorithms
(i.e., C-MOEA/DD, MOEA/D-ACDP, PPS, and C-TAEA)
failed to obtain promising results on CMOPs with discon-
nected PFs, such as MW14, as presented in Figs. 7(f)–(i). This
is reasonable since these four algorithms are decomposition-
based approaches, whose performance may be dramatically
deteriorated in problems with complex PFs [56]. While for
BiCo, clearly, it obtained the best IGD and HV values on
most test instances in these two types of CMOPs. The highly
competitive performance of BiCo can be attributed to the
usage of the archive population, in which the angle-based
selection scheme is employed to maintain some promising
infeasible solutions with diverse search directions. In addition,
the NSGA-II variant used in the main population can make
the feasible solutions be more evenly distributed along the PF.
From Figs. 7 and S-1, it is evident that on both MW14 and
MW8, BiCo can achieve the best results among the compared
nine algorithms.
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As for CMOPs of Type-III and Type-IV, their constrained
PFs are partially and all located in the infeasible regions,
respectively. To effectively address these two types of CMOPs,
not only the diversity of the search should be maintained
but also the information of the infeasible solutions close to
the PF should be employed. Again, the two feasibility-driven
CMOEAs (i.e., NSGA-II-CDP and A-NSGA-III) all failed
to obtain promising results on these two types of CMOPs.
Specifically, none of them could achieve any best or second-
best IGD or HV values (except for NSGA-II-CDP, which
obtained the second-best IGD and HV values on MW9). The
poor performance of these two feasibility-driven CMOEAs
is not difficult to grasp. First, they cannot maintain popu-
lation diversity as analyzed in Section II. Second, they can
only search from the feasible side of the search space. Note
that the PFs of these two types of CMOPs are partially or
all located in the constraint boundaries and the searches from
both the feasible and infeasible sides of the search space are
very necessary [7]. Regarding IDEA and SP, IDEA obtained
the second-best IGD and HV values on MW11 while SP could
not obtain any best or second-best results. This phenomenon
suggests that IDEA can obtain an overall better performance
than SP. It is easy to understand since, in SP, the penalty
factor is employed to help SP preserve some infeasible solu-
tions; however, how to set an appropriate penalty factor is
still a challenging issue in the current constrained optimization
research field [17], [57]. Then, the infeasible solutions kept in
SP maybe not as promising as those preserved by IDEA and,
thus, SP cannot be better than IDEA overall in these two types
of CMOPs. C-MOEA/DD did not obtain any best or second-
best results on these two types of CMOPs. The reason might
be that in C-MOEA/DD, an infeasible solution is discarded if
it coexists with a feasible solution in the same subregion, while
this infeasible solution may have good objective function val-
ues, which can benefit the evolutionary search significantly.
In terms of MOEA/D-ACDP, it obtained the second-best IGD
values on two instances (i.e., MW7 and MW12) and attained
the best and second-best HV values on MW7 and MW12,
respectively. Similar to C-MOEA/DD, PPS failed to obtain any
best or second-best results. The reason might be that the main
advantage of PPS lies in its push stage, which can help PPS
cross the infeasible regions in front of the unconstrained PF.
However, the infeasible regions in front of the unconstrained
PF in MW are not difficult to pass through, then the strength
of PPS cannot be exhibited. Regarding C-TAEA, it achieved
the best and second-best IGD values on one instance (i.e.,
MW10) and two instances (i.e., MW3 and MW13), respec-
tively, and reached the best HV values on MW3 and MW10
and the second-best HV value on MW13. As for BiCo, again,
it obtained the best overall performance in these two types of
CMOPs. The reason is quite straightforward: by coevolving
two populations, BiCo can not only maintain the diversity of
the search but can also coevolve the solutions toward the PF
from both the feasible and infeasible sides of the search space.

2) CTP Test Suite: Unlike in MW, the CMOPs in the
CTP test suite have large feasibility ratios. Analogously, we
compared the performance of BiCo with that of eight peer
algorithms on CTP problems. The results are summarized in

Tables S-III and S-IV. From these two tables, again, it is
observed that BiCo exhibited the best performance on most
instances in terms of both IGD and HV.

For CTP1, only one-third of the PF comes from the original
unconstrained PF, while the others come from the constraint
boundaries. Actually, based on the classification method in
MW [5], CTP1 is a CMOP of Type III. In this instance,
again, it is obverted that BiCo achieved the best results in
terms of both IGD and HV. This is easy to understand since
BiCo can not only maintain the diversity of the search but
can also coevolve the solutions toward the PF from both the
feasible and infeasible sides of the search space. Similar phe-
nomena can be seen in CTP3-CTP5 and CTP8 (see Fig. S-2).
As for CTP2 and CTP7, their PFs are divided into sev-
eral disconnected segments. To properly solve them, the key
point is to approach the PF from diverse search directions.
Interestingly, BiCo and SP obtained the best and second-best
results on these two instances, respectively. Concerning CTP6,
its PF is a continuous line on the boundary of a feasible
region. Then, CTP6 mainly challenges an algorithm’s capa-
bility of maintaining the diversity of the search in the feasible
regions. BiCo and NSGA-II-CDP were two winners for this
instance.

In general, the CMOEAs using the reference points or
vectors (i.e., A-NSGA-III, C-MOEA/DD, MOEA/D-ACDP,
PPS, and C-TAEA) failed to obtain promising results on
these CTP problems, which might be attributed to the com-
plex characteristics (i.e., disconnected and discrete) of the
PFs in these CMOPs [56]. As for BiCo, IDEA, SP, and
NSGA-II-CDP, the first three algorithms (infeasibility-assisted
CMOEAs) obtained an overall better performance than the lat-
ter one (feasibility-driven CMOEA). It is again verified that to
design an appropriate CMOEA, the infeasible solutions should
be considered carefully.

3) LIR-CMOP Test Suite: Aside from MW and CTP, we
also considered the CMOPs in the LIR-CMOP test suite. Note
that the CMOPs in the LIR-CMOP test suite are with large
infeasible regions. Again, we compared the performance of
BiCo with that of eight peer algorithms on LIR-CMOP prob-
lems. The results are summarized in Tables S-V and S-VI.
From these two tables, once again, BiCo achieved the over-
all best performance on most instances in terms of both IGD
and HV.

In terms of LIR-CMOP1–LIR-CMOP4, they have large
infeasible regions. On these four test instances, BiCo and
MOEA/D-ACDP were two winners. It seems that the algo-
rithms using the vector angle can obtain promising results
on these four instances. Regarding LIR-CMOP5 and LIR-
CMOP6, large infeasible regions lay in front of the PFs, but
these PFs are the same as those of their unconstrained coun-
terparts. To solve this kind of CMOPs, the CMOEAs using
multiobjective-based CHTs and constraint ignoring CHTs are
more suitable. As for BiCo, it could not gain promising
results on them. For LIR-CMOP7 and LIR-CMOP8, and LIR-
CMOP11 and LIR-CMOP12, their PFs are situated on the
constraint boundaries. Undoubtedly, BiCo gained the over-
all best performance on these four test instances. As for
LIR-CMOP9 and LIR-CMOP10, their PFs are parts of their
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Fig. 8. Friedman test between BiCo and its eight competitors in terms of IGD
and HV. The lower the ranking, the better the performance of an algorithm.

unconstrained PFs and the main difficulties lie in how to main-
tain the diversity of the search. The two algorithms using the
vector angle, that is, BiCo and MOEA/D-ACDP, obtained the
overall better performance again. The reason might be that the
usage of vector angle is very helpful to maintain the diversity
of the search. As for LIR-CMOP13 and LIR-CMOP14, they
are CMOPs with three objective functions. For LIR-CMOP13,
its PF is the same as its unconstrained PF. For this test instance,
C-MOEA/DD obtained the best IGD and HV results, followed
by MOEA/D-ACDP and BiCo. As for LIR-CMOP14, its PF
is located on the constraint boundaries. In this case, BiCo
and MOEA/D-ACDP obtained the overall best performance.
Specifically, on LIR-CMOP14, BiCo obtained the best IGD
value and the second-best HV value, and MOEA/D-ACDP
obtained the second-best IGD value and the best HV value.

From the above discussion, it is easy to conclude that
BiCo is also suitable for solving CMOPs with large infea-
sible regions. The images of the final population provided by
these nine compared CMOEAs on LIR-CMOP1 are plotted in
Fig. S-3.

4) Real-World CMOPs: One might be interested in whether
BiCo can obtain superior performance on real-world CMOPs.
To answer this question, we compared the performance of
BiCo with that of eight peer algorithms on six real-world
CMOPs. The results are summarized in Tables S-VII and
S-VIII in terms of IGD and HV, respectively.

It is observed that BiCo obtained the overall best
performance on these six instances. Regarding IGD, BiCo
obtained the best performance on DBD, OSY, TNK, and
WBD and the second-best performance on SRN. As for HV,
BiCo achieved the best performance on CONSTR, DBD,
and TNK, and the second-best performance on SRN. This
phenomenon suggests that BiCo is also suitable for solving
real-world CMOPs, rather than only for artificial ones. It is
thus concluded that BiCo is a promising alternative CMOEA
for dealing with a wide range of CMOPs.

5) Discussion: To analyze the overall performance of the
compared nine CMOEAs on all test instances, the Friedman
test was implemented in terms of both IGD and HV by
taking advantage of the KEEL software [58]. Note that in
the Friedman test, the lower the ranking, the better the
performance of an algorithm. From Fig. 8, it is evident that
BiCo achieves the lowest ranking in terms of both IGD and
HV, followed by IDEA, C-TAEA, MOEA/D-ACDP, and PPS.

This phenomenon suggests the necessity of maintaining some
infeasible solutions during evolution. As for CMOEAs using
reference points or vectors (i.e., A-NSGA-III, C-MOEA/DD,
MOEA/D-ACDP, PPS, and C-TAEA), the latter three algo-
rithms have a lower ranking than the former two. The poor
performance of A-NSGA-III is easy to understand since it
cannot maintain some promising infeasible solutions dur-
ing the evolution. Regarding C-MOEA/DD, its unsatisfactory
performance might be attributed to its relatively poor con-
vergence performance, which is of critical importance to
optimize CMOPs with two or three objective functions. To fur-
ther understand BiCo, next, we will investigate its important
algorithmic components.

B. Further Analysis

1) Necessity of the Archive Population: First, we want to
investigate the necessity of the archive population. To this end,
a variant of BiCo, called WoA-BiCo, was devised in our study.
The only alteration is that in WoA-BiCo, the archive popula-
tion is eliminated and only the main population is maintained.
We compared the performance of BiCo with that of WoA-
BiCo on the MW test suite, and the comparison results are
summarized in Tables S-IX and S-X in terms of IGD and HV,
respectively.

From these two tables, it is evident that BiCo outperformed
its variant on most test instances in terms of both IGD and HV.
To be specific, BiCo outperformed WoA-BiCo on nine and ten
out of 14 instances regarding IGD and HV, respectively, while
WoA-BiCo did not beat BiCo on any test instances. It is thus
concluded that the archive population is an indispensable part
of BiCo.

2) Benefit of the Restricted Mating Selection: One may be
interested in the benefit of the restricted mating selection in
BiCo. Can it be replaced by random selection? Or can we only
use CV or AD in the restricted mating selection? To answer
these questions, we considered three variants of BiCo, called:
1) WoR-BiCo; 2) CV-BiCo; and 3) AD-BiCo, respectively.
In WoR-BiCo, the solutions are randomly selected from the
union of the main and archive populations; while in CV-BiCo
and AD-BiCo, the solutions are distinguished only by making
use of CV and AD in the mating selection, respectively. The
comparative experiments between BiCo and its three variants
were carried out on the MW test suite. The results are sum-
marized in Tables S-XI and S-XII in terms of IGD and HV,
respectively.

From Tables S-XI and S-XII, it is observed that BiCo
obtained the overall best performance with respect to both IGD
and HV. In terms of IGD, BiCo obtained better performance
than WoR-BiCo, CV-BiCo, and AD-BiCo on nine, eight, and
four instances, respectively, while these three variants did not
outperform BiCo on any instances. With respect to HV, BiCo
beats WoR-BiCo, CV-BiCo, and AD-BiCo on seven, 11, and
two instances, respectively, while losing on none instance. It
is easy to conclude that the restricted mating selection plays a
very important role in BiCo and both CV and AD are necessary
for the restricted mating selection.
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Remark 3: We also investigated the effectiveness of
the updating mechanism for the archive population in
Section S-III-A of the supplementary file, the influence of
the parameter setting in BiCo in Section S-III-B of the sup-
plementary file, the availability of BiCo on MEMS [59] in
Section S-III-C of the supplementary file, the effect of the
reference point in Section S-III-D of the supplementary file,
the necessity of the feasible information in the angle-based
selection scheme in Section S-III-E of the supplementary file,
and the extending of BiCo for constrained many-objective
optimization in Section S-IV-F of the supplementary file.

VI. CONCLUSION

In this article, we have proposed a novel CMOEA, called
BiCo, by coevolving two populations—the main population
and the archive population—from two complementary direc-
tions. To update the main population, we employed a variant of
NSGA-II-CDP to push the population into the feasible region
and then to guide the population toward the PF from the feasi-
ble side of the search space. To update the archive population,
we first employed a nondominated sorting procedure to find
out the nondominated infeasible solutions and then developed
an angle-based selection scheme to drive the population toward
the PF from the infeasible side of the search space while main-
taining good diversity. Besides, to coordinate the interaction
between the main and archive populations, we designed a
restricted mating selection mechanism to produce promising
offspring. We compared the performance of BiCo with that of
eight other peer CMOEAs on up to 42 CMOPs. The empir-
ical results demonstrate that BiCo obtained the overall best
performance in terms of both IGD and HV. It is thus believed
that BiCo is a promising alternative to CMOEA for dealing
with a wide variety of CMOPs.

In the future, we will design some other novel approaches
to update the main population and the archive population,
respectively. Meanwhile, we are going to develop some other
efficient mechanisms to make use of the complementary
information in the main and archive populations. It is also our
plan to devote BiCo to coping with more CMOPs encountered
in real-life applications that may involve both equality and
inequality constraints [6]. The MATLAB source codes of BiCo
can be downloaded from: https://github.com/zhi-zhong/BiCo.
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